The method extracting the electromagnetic parameters from scattering coefficients was studied in this paper. The Support Vector Machine (SVM) method is used to solve the inverse problem of parameters extraction. The m...The method extracting the electromagnetic parameters from scattering coefficients was studied in this paper. The Support Vector Machine (SVM) method is used to solve the inverse problem of parameters extraction. The mapping relationship is set up by calculating a large number of S pa-rameters from the samples with different permittivity by using transmission line theory. The simulated data set is used as training data set for SVM. After the training, the SVM is used to predict the permittivity of material from the scattering coefficients.展开更多
Several parameters of a commercial Si-based Schottky barrier diode (SBD) with unknown metal material and semiconductor-type have been investigated in this work from dark forward and reverse I-V characteristics in the ...Several parameters of a commercial Si-based Schottky barrier diode (SBD) with unknown metal material and semiconductor-type have been investigated in this work from dark forward and reverse I-V characteristics in the temperature (T) range of [274.5 K - 366.5 K]. Those parameters include the reverse saturation current (I<sub>s</sub>), the ideality factor (n), the series and the shunt resistances (R<sub>s</sub> and R<sub>sh</sub>), the effective and the zero bias barrier heights (Φ<sub>B</sub> and Φ<sub>B0</sub>), the product of the electrical active area (A) and the effective Richardson constant (A**), the built-in potential (V<sub>bi</sub>), together with the semiconductor doping concentration (N<sub>A</sub> or N<sub>D</sub>). Some of them have been extracted by using two or three different methods. The main features of each approach have been clearly stated. From one parameter to another, results have been discussed in terms of structure performance, comparison on one another when extracted from different methods, accordance or discordance with data from other works, and parameter’s temperature or voltage dependence. A comparison of results on Φ<sub>B</sub>, ΦB0</sub>, n and N<sub>A</sub> or N<sub>D</sub> parameters with some available data in literature for the same parameters, has especially led to clear propositions on the identity of the analyzed SBD’s metal and semiconductor-type.展开更多
In this work,forward current voltage characteristics for multi-quantum wells Al_(0.33)Ga_(0.67)As Schottky diode were measured at temperature ranges from 100 to 300 K.The main parameters of this Schottky diode,such as...In this work,forward current voltage characteristics for multi-quantum wells Al_(0.33)Ga_(0.67)As Schottky diode were measured at temperature ranges from 100 to 300 K.The main parameters of this Schottky diode,such as the ideality factor,barrier height,series resistance and saturation current,have been extracted using both analytical and heuristics methods.Differential evolution(DE),particle swarm optimization(PSO)and artificial bee colony(ABC)have been chosen as candidate heuristics algorithms,while Cheung technic was selected as analytical extraction method.The obtained results show clearly the high performance of DE algorithms in terms of parameters accuracy,convergence speed and robustness.展开更多
Extraction of accurate Photo Voltaic (PV) model parameters is a challenging task for PV simulator developers. To mitigate this challenging task a novel approach using Gravitational Search Algorithm (GSA) for accurate ...Extraction of accurate Photo Voltaic (PV) model parameters is a challenging task for PV simulator developers. To mitigate this challenging task a novel approach using Gravitational Search Algorithm (GSA) for accurate extraction of PV model parameters is proposed in this paper. GSA is a population based heuristic optimization method which depends on the law of gravity and mass interactions. In this optimization method, the searcher agents are collection of masses which interact with each other using laws of gravity and motion of Newton. The developed PV model utilizes mathematical equations and is described through an equivalent circuit model comprising of a current source, a diode, a series resistor and a shunt resistor including the effect of changes in solar irradiation and ambient temperature. The optimal values of photo-current, diode ideality factor, series resistance and shunt resistance of the developed PV model are obtained by using GSA. The simulations of the characteristic curves of PV modules (SM55, ST36 and ST40) are carried out using MATLAB/Simulink environment. Results obtained using GSA are compared with Differential Evolution (DE), which shows that GSA based parameters are better optimal when compared to DE.展开更多
This paper proposes a design and fine-tuning method for mixed electric and magnetic coupling filters.It derives the quantitative relationship between the coupling coefficients(electric and magnetic coupling,i.e.,EC an...This paper proposes a design and fine-tuning method for mixed electric and magnetic coupling filters.It derives the quantitative relationship between the coupling coefficients(electric and magnetic coupling,i.e.,EC and MC)and the linear coefficients of frequencydependent coupling for the first time.Different from the parameter extraction technique using the bandpass circuit model,the proposed approach explicitly relatesEC and MC to the coupling matrix model.This paper provides a general theoretic framework for computer-aided design and tuning of a mixed electric and magnetic coupling filter based on coupling matrices.An example of a 7th-order coaxial combline filter design is given in the paper,verifying the practical value of the approach.展开更多
A novel parameter extraction method with rational functions is presented for the 2-πequivalent circuit model of RF CMOS spiral inductors. The final S-parameters simulated by the circuit model closely match experiment...A novel parameter extraction method with rational functions is presented for the 2-πequivalent circuit model of RF CMOS spiral inductors. The final S-parameters simulated by the circuit model closely match experimental data. The extraction strategy is straightforward and can be easily implemented as a CAD tool to model spiral inductors. The resulting circuit models will be very useful for RF circuit designers.展开更多
We improve the genetic algorithm by combining it with a simulated annealing algorithm. The improved algorithm is used to extract model parameters of SOI MOSFETs, which are fabricated with standard 1.2μm CMOS/SOI tech...We improve the genetic algorithm by combining it with a simulated annealing algorithm. The improved algorithm is used to extract model parameters of SOI MOSFETs, which are fabricated with standard 1.2μm CMOS/SOI technology developed by the Institute of Microelectronics of the Chinese Academy of Sciences. The simulation results using this model are in excellent agreement with experimental results. The precision is improved noticeably compared to commercial software. This method requires neither a deeper understanding of SOl MOSFETs model nor more complex computations than conventional algorithms used by commercial software. Comprehensive verification shows that this model is applicable to a very large range of device sizes.展开更多
An extraction method of the component parameter values of an enhancement-mode InGaP/AIGaAs/In-GaAs PHEMT small signal equivalent circuit is presented,and these component parameter values are extracted by using the EEH...An extraction method of the component parameter values of an enhancement-mode InGaP/AIGaAs/In-GaAs PHEMT small signal equivalent circuit is presented,and these component parameter values are extracted by using the EEHEMT1 model of IC-CAP software. The extraction results are verified by ADS software,and the DC I-V curves and S parameters simulated by ADS are basically accordant with those of the test results. These results indicate that the EEHEMT1 model can be used for extracting the component parameters of an enhancement-mode PHEMT.展开更多
An accurate and novel small-signal equivalent circuit model for GaN high-electron-mobility transistors(HEMTs)is proposed,which considers a dual-field-plate(FP)made up of a gate-FP and a source-FP.The equivalent circui...An accurate and novel small-signal equivalent circuit model for GaN high-electron-mobility transistors(HEMTs)is proposed,which considers a dual-field-plate(FP)made up of a gate-FP and a source-FP.The equivalent circuit of the overall model is composed of parasitic elements,intrinsic transistors,gate-FP,and source-FP networks.The equivalent circuit of the gate-FP is identical to that of the intrinsic transistor.In order to simplify the complexity of the model,a series combination of a resistor and a capacitor is employed to represent the source-FP.The analytical extraction procedure of the model parameters is presented based on the proposed equivalent circuit.The verification is carried out on a 4×250μm GaN HEMT device with a gate-FP and a source-FP in a 0.45μm technology.Compared with the classic model,the proposed novel small-signal model shows closer agreement with measured S-parameters in the range of 1.0 to 18.0 GHz.展开更多
A novel parameter extraction technique suitable f or short channel length lightly-doped-drain (LDD) MOSFET's is proposed which seg ments the total gate bias range,and executes the linear regression in every subs ...A novel parameter extraction technique suitable f or short channel length lightly-doped-drain (LDD) MOSFET's is proposed which seg ments the total gate bias range,and executes the linear regression in every subs ections,yielding the gate bias dependent parameters,such as effective channel le ngth,parasitic resistance,and mobility,etc.This method avoids the gate bias rang e optimization,and retains the accuracy and simplicity of linear regression.The extracted gate bias dependent parameters are implemented in the compact I-V model which has been proposed for deep submicron LDD MOSFET's.The good agreemen ts between simulations and measurements of the devices on 0.18μm CMOS technolo gy indicate the effectivity of this technique.展开更多
TiO2 thin films were deposited on glass substrates by sputtering in a conventional rf magnetron sputtering system. X-ray diffraction pattern and transmission spectrum were measured. The curves of refraction index and ...TiO2 thin films were deposited on glass substrates by sputtering in a conventional rf magnetron sputtering system. X-ray diffraction pattern and transmission spectrum were measured. The curves of refraction index and extinction coefficient distributions as well as the thickness of films calculated from transmission spectrum were obtained. The optimization problem was also solved using a method based on a constrained nonlinear programming algorithm.展开更多
A sub circuit model for VDMOS is built according to its physical structure.Parameters and formulas describing the device are also derived from this model.Comparing to former results,this model avoids too many technic...A sub circuit model for VDMOS is built according to its physical structure.Parameters and formulas describing the device are also derived from this model.Comparing to former results,this model avoids too many technical parameters and simplify the sub circuit efficiently.As a result of numeric computation,this simple model with clear physical conception demonstrates excellent agreements between measured and modeled response (DC error within 5%,AC error within 10%).Such a model is now available for circuit simulation and parameter extraction.展开更多
This paper presents an accurate small-signal model for multi-gate GaAs pHEMTs in switching-mode.The extraction method for the proposed model is developed.A 2-gate switch structure is fabricated on a commercial 0.5μm ...This paper presents an accurate small-signal model for multi-gate GaAs pHEMTs in switching-mode.The extraction method for the proposed model is developed.A 2-gate switch structure is fabricated on a commercial 0.5μm AlGaAs/GaAs pHEMT technology to verify the proposed model.Excellent agreement has been obtained between the measured and simulated results over a wide frequency range.展开更多
Parameter extraction is an important step for circuit simulation methods that are based on physical models of semiconductor devices. A novel physical parameter extraction approach for Schottky diodes is proposed in th...Parameter extraction is an important step for circuit simulation methods that are based on physical models of semiconductor devices. A novel physical parameter extraction approach for Schottky diodes is proposed in this paper. By employing a set of analytical formulas, this approach extracts all of the necessary physical parameters of the diode chip in a unique way. It then extracts the package parasitic parameters with a curve-fitting method. To validate the proposed approach, a model HSMS-282 c commercial Schottky diode is taken as an example. Its physical parameters are extracted and used to simulate the diode's electrical characteristics. The simulated results based on the extracted parameters are compared with the measurements and a good agreement is obtained, which verifies the feasibility and accuracy of the proposed approach.展开更多
Particle swarm optimization(PSO) and invasive weed optimization(IWO) algorithms are used for extracting the modeling parameters of materials useful for optics and photonics research community. These two bio-inspired a...Particle swarm optimization(PSO) and invasive weed optimization(IWO) algorithms are used for extracting the modeling parameters of materials useful for optics and photonics research community. These two bio-inspired algorithms are used here for the first time in this particular field to the best of our knowledge. The algorithms are used for modeling graphene oxide and the performances of the two are compared. Two objective functions are used for different boundary values. Root mean square(RMS) deviation is determined and compared.展开更多
Current transport mechanism in Ni-germanide/n-type Ge Schottky diodes is investigated using current-voltage characterisation technique with annealing temperatures from 300 ℃ to 500℃. Based on the current transport m...Current transport mechanism in Ni-germanide/n-type Ge Schottky diodes is investigated using current-voltage characterisation technique with annealing temperatures from 300 ℃ to 500℃. Based on the current transport model, a simple method to extract parameters of the NiGe/Ge diode is presented by using the I-V characteristics. Parameters of NiGe/n-type Ge Schottky diodes fabricated for testing in this paper are as follows: the ideality factor n, the series resistance Rs, the zero-field barrier height Фb0, the interface state density Dit, and the interracial layer capacitance Ci. It is found that the ideality factor n of the diode increases with the increase of annealing temperature. As the temperature increases, the interface defects from the sputtering damage and the penetration of metallic states into the Ge energy gap are passivated, thus improving the junction quality. However, the undesirable crystallisations of Ni-germanide are observed together with NiGe at a temperature higher than 400℃. Depositing a very thin (-1 nm) heavily Ge-doped n+ Ge intermediate layer can improve the NiGe film morphology significantly.展开更多
The mathematical modeling of solar cells is essential for any optimization operation of the efficiency or the diagnosis of photovoltaic generator. The photovoltaic module is generally represented by an equivalent circ...The mathematical modeling of solar cells is essential for any optimization operation of the efficiency or the diagnosis of photovoltaic generator. The photovoltaic module is generally represented by an equivalent circuit whose parameters are experimentally calculated by using the characteristic current-tension, I-V. The precise determination of these parameters stays a challenge for the researchers, making to a big difference in the models and the digital methods dedicated to their characterizations. In the present paper, We are interested to characterize the parameters of single diode and two diodes models, in order to plan the behavior of the photovoltaic generator under real functioning conditions. We developed an identification method of the parameters using Newton Raphson method by using the software Matlab/Simulink. This method is the faster technique which allows the identification of several parameters and can be used in real time applications. The results of the proposed method show an accordance with the experimental and simulated characteristics of photovoltaic generator.展开更多
An accurate and broad-band method for hetero-junction bipolar transistors(HBT) small-signal model parameters-extraction is presented in this paper. An equivalent circuit forthe HBT under a forward-bias condition is pr...An accurate and broad-band method for hetero-junction bipolar transistors(HBT) small-signal model parameters-extraction is presented in this paper. An equivalent circuit forthe HBT under a forward-bias condition is proposed for extraction of accessresistance and parasiticinductance. This method differs from previous ones by extracting the c-quivalent circuit parameterswithout using special test structure or global numerical optimization techniques. The mainadvantage of this method is that a unique and physically meaningful set of intrinsic parameters isextracted from impedance and admittance representation of the measured S-pa-rameters in thefrequency range of 1-12 GHz under different bias conditions. The method yields a deviation of lessthan 5% between measured and modeled S-parameters.展开更多
This paper describes a method to extract electrical parameters of the through via in Package-on-Package(PoP)with interposer.Using the de-embedding technique electrical parameters of the through via are extracted.With ...This paper describes a method to extract electrical parameters of the through via in Package-on-Package(PoP)with interposer.Using the de-embedding technique electrical parameters of the through via are extracted.With the extracted electrical parameters of the through via,the effects of via height,the distance between signal and GND vias,and anti-pad clearance on the electrical characteristics are discussed.展开更多
An improved parasitic parameter extraction method for InP high electron mobil-ity transistor(HEMT)is presented.Parasitic parameter extraction is the first step of model parameter extraction and its accuracy has a grea...An improved parasitic parameter extraction method for InP high electron mobil-ity transistor(HEMT)is presented.Parasitic parameter extraction is the first step of model parameter extraction and its accuracy has a great impact on the subsequent internal pa-rameter extraction.It is necessary to accurately determine and effectively eliminate the parasitic effect,so as to avoid the error propagation to the internal circuit parameters.In this paper,in order to obtain higher accuracy of parasitic parameters,parasitic parameters are extracted based on traditional analytical method and optimization algorithm to obtain the best parasitic parameters.The validity of the proposed parasitic parameter extraction method is verified with excellent agreement between the measured and modeled S-param-eters up to 40 GHz for InP HEMT.In 0.1-40 GHz InP HEMT,the average relative error of the optimization algorithm is about 9%higher than that of the analysis method,which verifies the validity of the parasitic parameter extraction method.The extraction of parasit-ic parameters not only provides a foundation for the high-precision extraction of small sig-nal intrinsic parameters of HEMT devices,but also lays a foundation for the high-preci-sion extraction of equivalent circuit model parameters of large signal and noise signals of HEMT devices.展开更多
基金Supported by the Project of National Key Laboratory Fund
文摘The method extracting the electromagnetic parameters from scattering coefficients was studied in this paper. The Support Vector Machine (SVM) method is used to solve the inverse problem of parameters extraction. The mapping relationship is set up by calculating a large number of S pa-rameters from the samples with different permittivity by using transmission line theory. The simulated data set is used as training data set for SVM. After the training, the SVM is used to predict the permittivity of material from the scattering coefficients.
文摘Several parameters of a commercial Si-based Schottky barrier diode (SBD) with unknown metal material and semiconductor-type have been investigated in this work from dark forward and reverse I-V characteristics in the temperature (T) range of [274.5 K - 366.5 K]. Those parameters include the reverse saturation current (I<sub>s</sub>), the ideality factor (n), the series and the shunt resistances (R<sub>s</sub> and R<sub>sh</sub>), the effective and the zero bias barrier heights (Φ<sub>B</sub> and Φ<sub>B0</sub>), the product of the electrical active area (A) and the effective Richardson constant (A**), the built-in potential (V<sub>bi</sub>), together with the semiconductor doping concentration (N<sub>A</sub> or N<sub>D</sub>). Some of them have been extracted by using two or three different methods. The main features of each approach have been clearly stated. From one parameter to another, results have been discussed in terms of structure performance, comparison on one another when extracted from different methods, accordance or discordance with data from other works, and parameter’s temperature or voltage dependence. A comparison of results on Φ<sub>B</sub>, ΦB0</sub>, n and N<sub>A</sub> or N<sub>D</sub> parameters with some available data in literature for the same parameters, has especially led to clear propositions on the identity of the analyzed SBD’s metal and semiconductor-type.
文摘In this work,forward current voltage characteristics for multi-quantum wells Al_(0.33)Ga_(0.67)As Schottky diode were measured at temperature ranges from 100 to 300 K.The main parameters of this Schottky diode,such as the ideality factor,barrier height,series resistance and saturation current,have been extracted using both analytical and heuristics methods.Differential evolution(DE),particle swarm optimization(PSO)and artificial bee colony(ABC)have been chosen as candidate heuristics algorithms,while Cheung technic was selected as analytical extraction method.The obtained results show clearly the high performance of DE algorithms in terms of parameters accuracy,convergence speed and robustness.
文摘Extraction of accurate Photo Voltaic (PV) model parameters is a challenging task for PV simulator developers. To mitigate this challenging task a novel approach using Gravitational Search Algorithm (GSA) for accurate extraction of PV model parameters is proposed in this paper. GSA is a population based heuristic optimization method which depends on the law of gravity and mass interactions. In this optimization method, the searcher agents are collection of masses which interact with each other using laws of gravity and motion of Newton. The developed PV model utilizes mathematical equations and is described through an equivalent circuit model comprising of a current source, a diode, a series resistor and a shunt resistor including the effect of changes in solar irradiation and ambient temperature. The optimal values of photo-current, diode ideality factor, series resistance and shunt resistance of the developed PV model are obtained by using GSA. The simulations of the characteristic curves of PV modules (SM55, ST36 and ST40) are carried out using MATLAB/Simulink environment. Results obtained using GSA are compared with Differential Evolution (DE), which shows that GSA based parameters are better optimal when compared to DE.
基金supported by the National Natural Science Foundation of China under Grant No.62001339.
文摘This paper proposes a design and fine-tuning method for mixed electric and magnetic coupling filters.It derives the quantitative relationship between the coupling coefficients(electric and magnetic coupling,i.e.,EC and MC)and the linear coefficients of frequencydependent coupling for the first time.Different from the parameter extraction technique using the bandpass circuit model,the proposed approach explicitly relatesEC and MC to the coupling matrix model.This paper provides a general theoretic framework for computer-aided design and tuning of a mixed electric and magnetic coupling filter based on coupling matrices.An example of a 7th-order coaxial combline filter design is given in the paper,verifying the practical value of the approach.
文摘A novel parameter extraction method with rational functions is presented for the 2-πequivalent circuit model of RF CMOS spiral inductors. The final S-parameters simulated by the circuit model closely match experimental data. The extraction strategy is straightforward and can be easily implemented as a CAD tool to model spiral inductors. The resulting circuit models will be very useful for RF circuit designers.
文摘We improve the genetic algorithm by combining it with a simulated annealing algorithm. The improved algorithm is used to extract model parameters of SOI MOSFETs, which are fabricated with standard 1.2μm CMOS/SOI technology developed by the Institute of Microelectronics of the Chinese Academy of Sciences. The simulation results using this model are in excellent agreement with experimental results. The precision is improved noticeably compared to commercial software. This method requires neither a deeper understanding of SOl MOSFETs model nor more complex computations than conventional algorithms used by commercial software. Comprehensive verification shows that this model is applicable to a very large range of device sizes.
文摘An extraction method of the component parameter values of an enhancement-mode InGaP/AIGaAs/In-GaAs PHEMT small signal equivalent circuit is presented,and these component parameter values are extracted by using the EEHEMT1 model of IC-CAP software. The extraction results are verified by ADS software,and the DC I-V curves and S parameters simulated by ADS are basically accordant with those of the test results. These results indicate that the EEHEMT1 model can be used for extracting the component parameters of an enhancement-mode PHEMT.
文摘An accurate and novel small-signal equivalent circuit model for GaN high-electron-mobility transistors(HEMTs)is proposed,which considers a dual-field-plate(FP)made up of a gate-FP and a source-FP.The equivalent circuit of the overall model is composed of parasitic elements,intrinsic transistors,gate-FP,and source-FP networks.The equivalent circuit of the gate-FP is identical to that of the intrinsic transistor.In order to simplify the complexity of the model,a series combination of a resistor and a capacitor is employed to represent the source-FP.The analytical extraction procedure of the model parameters is presented based on the proposed equivalent circuit.The verification is carried out on a 4×250μm GaN HEMT device with a gate-FP and a source-FP in a 0.45μm technology.Compared with the classic model,the proposed novel small-signal model shows closer agreement with measured S-parameters in the range of 1.0 to 18.0 GHz.
文摘A novel parameter extraction technique suitable f or short channel length lightly-doped-drain (LDD) MOSFET's is proposed which seg ments the total gate bias range,and executes the linear regression in every subs ections,yielding the gate bias dependent parameters,such as effective channel le ngth,parasitic resistance,and mobility,etc.This method avoids the gate bias rang e optimization,and retains the accuracy and simplicity of linear regression.The extracted gate bias dependent parameters are implemented in the compact I-V model which has been proposed for deep submicron LDD MOSFET's.The good agreemen ts between simulations and measurements of the devices on 0.18μm CMOS technolo gy indicate the effectivity of this technique.
文摘TiO2 thin films were deposited on glass substrates by sputtering in a conventional rf magnetron sputtering system. X-ray diffraction pattern and transmission spectrum were measured. The curves of refraction index and extinction coefficient distributions as well as the thickness of films calculated from transmission spectrum were obtained. The optimization problem was also solved using a method based on a constrained nonlinear programming algorithm.
文摘A sub circuit model for VDMOS is built according to its physical structure.Parameters and formulas describing the device are also derived from this model.Comparing to former results,this model avoids too many technical parameters and simplify the sub circuit efficiently.As a result of numeric computation,this simple model with clear physical conception demonstrates excellent agreements between measured and modeled response (DC error within 5%,AC error within 10%).Such a model is now available for circuit simulation and parameter extraction.
文摘This paper presents an accurate small-signal model for multi-gate GaAs pHEMTs in switching-mode.The extraction method for the proposed model is developed.A 2-gate switch structure is fabricated on a commercial 0.5μm AlGaAs/GaAs pHEMT technology to verify the proposed model.Excellent agreement has been obtained between the measured and simulated results over a wide frequency range.
基金Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(Grant No.U1230112)
文摘Parameter extraction is an important step for circuit simulation methods that are based on physical models of semiconductor devices. A novel physical parameter extraction approach for Schottky diodes is proposed in this paper. By employing a set of analytical formulas, this approach extracts all of the necessary physical parameters of the diode chip in a unique way. It then extracts the package parasitic parameters with a curve-fitting method. To validate the proposed approach, a model HSMS-282 c commercial Schottky diode is taken as an example. Its physical parameters are extracted and used to simulate the diode's electrical characteristics. The simulated results based on the extracted parameters are compared with the measurements and a good agreement is obtained, which verifies the feasibility and accuracy of the proposed approach.
文摘Particle swarm optimization(PSO) and invasive weed optimization(IWO) algorithms are used for extracting the modeling parameters of materials useful for optics and photonics research community. These two bio-inspired algorithms are used here for the first time in this particular field to the best of our knowledge. The algorithms are used for modeling graphene oxide and the performances of the two are compared. Two objective functions are used for different boundary values. Root mean square(RMS) deviation is determined and compared.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60936005 and 60976068)the New Century Excellent Talents of Ministry of Education of China (Grant No. NCET-05-0851)+1 种基金the Cultivation Fund of Key Scientific and Technical Innovation Project,Ministry of Education of China (Grant No. 708083)the Applied Materials Innovation Fund(Grant No. XA-AM-200701)
文摘Current transport mechanism in Ni-germanide/n-type Ge Schottky diodes is investigated using current-voltage characterisation technique with annealing temperatures from 300 ℃ to 500℃. Based on the current transport model, a simple method to extract parameters of the NiGe/Ge diode is presented by using the I-V characteristics. Parameters of NiGe/n-type Ge Schottky diodes fabricated for testing in this paper are as follows: the ideality factor n, the series resistance Rs, the zero-field barrier height Фb0, the interface state density Dit, and the interracial layer capacitance Ci. It is found that the ideality factor n of the diode increases with the increase of annealing temperature. As the temperature increases, the interface defects from the sputtering damage and the penetration of metallic states into the Ge energy gap are passivated, thus improving the junction quality. However, the undesirable crystallisations of Ni-germanide are observed together with NiGe at a temperature higher than 400℃. Depositing a very thin (-1 nm) heavily Ge-doped n+ Ge intermediate layer can improve the NiGe film morphology significantly.
文摘The mathematical modeling of solar cells is essential for any optimization operation of the efficiency or the diagnosis of photovoltaic generator. The photovoltaic module is generally represented by an equivalent circuit whose parameters are experimentally calculated by using the characteristic current-tension, I-V. The precise determination of these parameters stays a challenge for the researchers, making to a big difference in the models and the digital methods dedicated to their characterizations. In the present paper, We are interested to characterize the parameters of single diode and two diodes models, in order to plan the behavior of the photovoltaic generator under real functioning conditions. We developed an identification method of the parameters using Newton Raphson method by using the software Matlab/Simulink. This method is the faster technique which allows the identification of several parameters and can be used in real time applications. The results of the proposed method show an accordance with the experimental and simulated characteristics of photovoltaic generator.
基金Supported by the National Natural Science Foun dation of China(60444004) and the AM Foundation of Shanghai Mu nicipal Science and Technology Commission of China (0109)
文摘An accurate and broad-band method for hetero-junction bipolar transistors(HBT) small-signal model parameters-extraction is presented in this paper. An equivalent circuit forthe HBT under a forward-bias condition is proposed for extraction of accessresistance and parasiticinductance. This method differs from previous ones by extracting the c-quivalent circuit parameterswithout using special test structure or global numerical optimization techniques. The mainadvantage of this method is that a unique and physically meaningful set of intrinsic parameters isextracted from impedance and admittance representation of the measured S-pa-rameters in thefrequency range of 1-12 GHz under different bias conditions. The method yields a deviation of lessthan 5% between measured and modeled S-parameters.
基金supported by KEIT(0802DD-2007)funded by MKE(Ministry of Knowledge Economy)
文摘This paper describes a method to extract electrical parameters of the through via in Package-on-Package(PoP)with interposer.Using the de-embedding technique electrical parameters of the through via are extracted.With the extracted electrical parameters of the through via,the effects of via height,the distance between signal and GND vias,and anti-pad clearance on the electrical characteristics are discussed.
文摘An improved parasitic parameter extraction method for InP high electron mobil-ity transistor(HEMT)is presented.Parasitic parameter extraction is the first step of model parameter extraction and its accuracy has a great impact on the subsequent internal pa-rameter extraction.It is necessary to accurately determine and effectively eliminate the parasitic effect,so as to avoid the error propagation to the internal circuit parameters.In this paper,in order to obtain higher accuracy of parasitic parameters,parasitic parameters are extracted based on traditional analytical method and optimization algorithm to obtain the best parasitic parameters.The validity of the proposed parasitic parameter extraction method is verified with excellent agreement between the measured and modeled S-param-eters up to 40 GHz for InP HEMT.In 0.1-40 GHz InP HEMT,the average relative error of the optimization algorithm is about 9%higher than that of the analysis method,which verifies the validity of the parasitic parameter extraction method.The extraction of parasit-ic parameters not only provides a foundation for the high-precision extraction of small sig-nal intrinsic parameters of HEMT devices,but also lays a foundation for the high-preci-sion extraction of equivalent circuit model parameters of large signal and noise signals of HEMT devices.