Railway passenger flow forecasting can help to develop sensible railway schedules,make full use of railway resources,and meet the travel demand of passengers.The structure of passenger flow in railway networks and the...Railway passenger flow forecasting can help to develop sensible railway schedules,make full use of railway resources,and meet the travel demand of passengers.The structure of passenger flow in railway networks and the spatiotemporal relationship of passenger flow among stations are two distinctive features of railway passenger flow.Most of the previous studies used only a single feature for prediction and lacked correlations,resulting in suboptimal performance.To address the above-mentioned problem,we proposed the railway passenger flow prediction model called Flow-Similarity Attention Graph Convolutional Network(F-SAGCN).First,we constructed the passenger flow relations graph(RG)based on the Origin-Destination(OD).Second,the Passenger Flow Fluctuation Similarity(PFFS)algorithm is used to measure the similarity of passenger flow between stations,which helps construct the spatiotemporal similarity graph(SG).Then,we determine the weights of the mutual influence of different stations at different times through an attention mechanism and extract spatiotemporal features through graph convolution on the RG and SG.Finally,we fused the spatiotemporal features and the original temporal features of stations for prediction.The comparison experiments on a railway bureau’s accurate railway passenger flow data show that the proposed F-SAGCN method improved the prediction accuracy and reduced the mean absolute percentage error(MAPE)of 46 stations to 7.93%.展开更多
A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pres...A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pressure on passenger safety and operation.First,the passenger flow sequence models in the study are broken down using VMD for noise reduction.The objective environment features are then added to the characteristic factors that affect the passenger flow.The target station serves as an additional spatial feature and is mined concurrently using the KNN algorithm.It is shown that the hybrid model VMD-CLSMT has a higher prediction accuracy,by setting BP,CNN,and LSTM reference experiments.All models’second order prediction effects are superior to their first order effects,showing that the residual network can significantly raise model prediction accuracy.Additionally,it confirms the efficacy of supplementary and objective environmental features.展开更多
In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fu...In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future.展开更多
Purpose – This paper aims to propose a medium-term forecast model for the daily passenger volume of HighSpeed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily volume formultiple consecutiv...Purpose – This paper aims to propose a medium-term forecast model for the daily passenger volume of HighSpeed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily volume formultiple consecutivedays (e.g. 120 days).Design/methodology/approach – By analyzing the characteristics of the historical data on daily passengervolume of HSR systems, the date and holiday labels were designed with determined value ranges.In accordance to the autoregressive characteristics of the daily passenger volume of HSR, the Double LayerParallel Wavelet Neural Network (DLP-WNN) model suitable for the medium-term (about 120 d) forecast of thedaily passenger volume of HSR was established. The DLP-WNN model obtains the daily forecast result byweighed summation of the daily output values of the two subnets. Subnet 1 reflects the overall trend of dailypassenger volumes in the recent period, and subnet 2 the daily fluctuation of the daily passenger volume toensure the accuracy of medium-term forecast.Findings – According to the example application, in which the DLP-WNN modelwas used for the medium-termforecast of the daily passenger volumes for 120 days for typical O-D pairs at 4 different distances, the averageabsolute percentage error is 7%-12%, obviously lower than the results measured by the Back Propagation (BP)neural network, the ELM (extreme learning machine), the ELMAN neural network, the GRNN (generalizedregression neural network) and the VMD-GA-BP. The DLP-WNN model was verified to be suitable for themedium-term forecast of the daily passenger volume of HSR.Originality/value – This study proposed a Double Layer Parallel structure forecast model for medium-termdaily passenger volume (about 120 days) of HSR systems by using the date and holiday labels and WaveletNeural Network. The predict results are important input data for supporting the line planning, scheduling andother decisions in operation and management in HSR systems.展开更多
文摘Railway passenger flow forecasting can help to develop sensible railway schedules,make full use of railway resources,and meet the travel demand of passengers.The structure of passenger flow in railway networks and the spatiotemporal relationship of passenger flow among stations are two distinctive features of railway passenger flow.Most of the previous studies used only a single feature for prediction and lacked correlations,resulting in suboptimal performance.To address the above-mentioned problem,we proposed the railway passenger flow prediction model called Flow-Similarity Attention Graph Convolutional Network(F-SAGCN).First,we constructed the passenger flow relations graph(RG)based on the Origin-Destination(OD).Second,the Passenger Flow Fluctuation Similarity(PFFS)algorithm is used to measure the similarity of passenger flow between stations,which helps construct the spatiotemporal similarity graph(SG).Then,we determine the weights of the mutual influence of different stations at different times through an attention mechanism and extract spatiotemporal features through graph convolution on the RG and SG.Finally,we fused the spatiotemporal features and the original temporal features of stations for prediction.The comparison experiments on a railway bureau’s accurate railway passenger flow data show that the proposed F-SAGCN method improved the prediction accuracy and reduced the mean absolute percentage error(MAPE)of 46 stations to 7.93%.
基金the Major Projects of the National Social Science Fund in China(21&ZD127).
文摘A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pressure on passenger safety and operation.First,the passenger flow sequence models in the study are broken down using VMD for noise reduction.The objective environment features are then added to the characteristic factors that affect the passenger flow.The target station serves as an additional spatial feature and is mined concurrently using the KNN algorithm.It is shown that the hybrid model VMD-CLSMT has a higher prediction accuracy,by setting BP,CNN,and LSTM reference experiments.All models’second order prediction effects are superior to their first order effects,showing that the residual network can significantly raise model prediction accuracy.Additionally,it confirms the efficacy of supplementary and objective environmental features.
基金National Natural Science Foundation of China(No.61663021)Science and Technology Support Project of Gansu Province(No.1304GKCA023)Scientific Research Project in University of Gansu Province(No.2017A-025)
文摘In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future.
基金supported by the National Natural Science Foundation of China(Grant Nos.72171236 and 71701216)the National Key R&D Program of China(Grant No.2020YFB1600400)+2 种基金the China Scholarship Council(202008360277)the Key Science and Technology Research Program of the Educational Department of Jiangxi Province(Grant No.GJJ200605)the Natural Science Foundation of Hunan Province(Grant No.2020JJ5783).
文摘Purpose – This paper aims to propose a medium-term forecast model for the daily passenger volume of HighSpeed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily volume formultiple consecutivedays (e.g. 120 days).Design/methodology/approach – By analyzing the characteristics of the historical data on daily passengervolume of HSR systems, the date and holiday labels were designed with determined value ranges.In accordance to the autoregressive characteristics of the daily passenger volume of HSR, the Double LayerParallel Wavelet Neural Network (DLP-WNN) model suitable for the medium-term (about 120 d) forecast of thedaily passenger volume of HSR was established. The DLP-WNN model obtains the daily forecast result byweighed summation of the daily output values of the two subnets. Subnet 1 reflects the overall trend of dailypassenger volumes in the recent period, and subnet 2 the daily fluctuation of the daily passenger volume toensure the accuracy of medium-term forecast.Findings – According to the example application, in which the DLP-WNN modelwas used for the medium-termforecast of the daily passenger volumes for 120 days for typical O-D pairs at 4 different distances, the averageabsolute percentage error is 7%-12%, obviously lower than the results measured by the Back Propagation (BP)neural network, the ELM (extreme learning machine), the ELMAN neural network, the GRNN (generalizedregression neural network) and the VMD-GA-BP. The DLP-WNN model was verified to be suitable for themedium-term forecast of the daily passenger volume of HSR.Originality/value – This study proposed a Double Layer Parallel structure forecast model for medium-termdaily passenger volume (about 120 days) of HSR systems by using the date and holiday labels and WaveletNeural Network. The predict results are important input data for supporting the line planning, scheduling andother decisions in operation and management in HSR systems.