期刊文献+
共找到10,648篇文章
< 1 2 250 >
每页显示 20 50 100
Improved lazy theta algorithm based on octree map for path planning of UAV
1
作者 Meng-shun Yuan Tong-le Zhou Mou Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期8-18,共11页
This paper investigates the path planning method of unmanned aerial vehicle(UAV)in threedimensional map.Firstly,in order to keep a safe distance between UAV and obstacles,the obstacle grid in the map is expanded.By us... This paper investigates the path planning method of unmanned aerial vehicle(UAV)in threedimensional map.Firstly,in order to keep a safe distance between UAV and obstacles,the obstacle grid in the map is expanded.By using the data structure of octree,the octree map is constructed,and the search nodes is significantly reduced.Then,the lazy theta*algorithm,including neighbor node search,line-of-sight algorithm and heuristics weight adjustment is improved.In the process of node search,UAV constraint conditions are considered to ensure the planned path is actually flyable.The redundant nodes are reduced by the line-of-sight algorithm through judging whether visible between two nodes.Heuristic weight adjustment strategy is employed to control the precision and speed of search.Finally,the simulation results show that the improved lazy theta*algorithm is suitable for path planning of UAV in complex environment with multi-constraints.The effectiveness and flight ability of the algorithm are verified by comparing experiments and real flight. 展开更多
关键词 Unmanned aerial vehicle path planning Lazy theta*algorithm Octree map Line-of-sight algorithm
下载PDF
Path Planning of UAV by Combing Improved Ant Colony System and Dynamic Window Algorithm
2
作者 徐海芹 邢浩翔 刘洋 《Journal of Donghua University(English Edition)》 CAS 2023年第6期676-683,共8页
A fusion algorithm is proposed to enhance the search speed of an ant colony system(ACS)for the global path planning and overcome the challenges of the local path planning in an unmanned aerial vehicle(UAV).The ACS sea... A fusion algorithm is proposed to enhance the search speed of an ant colony system(ACS)for the global path planning and overcome the challenges of the local path planning in an unmanned aerial vehicle(UAV).The ACS search efficiency is enhanced by adopting a 16-direction 24-neighborhood search way,a safety grid search way,and an elite hybrid strategy to accelerate global convergence.Quadratic planning is performed using the moving average(MA)method.The fusion algorithm incorporates a dynamic window approach(DWA)to deal with the local path planning,sets a retracement mechanism,and adjusts the evaluation function accordingly.Experimental results in two environments demonstrate that the improved ant colony system(IACS)achieves superior planning efficiency.Additionally,the optimized dynamic window approach(ODWA)demonstrates its ability to handle multiple dynamic situations.Overall,the fusion optimization algorithm can accomplish the mixed path planning effectively. 展开更多
关键词 ant colony system(ACS) dynamic window approach(DWA) path planning dynamic obstacle
下载PDF
Multi-UAVs Collaborative Path Planning in the Cramped Environment
3
作者 Siyuan Feng Linzhi Zeng +2 位作者 Jining Liu Yi Yang Wenjie Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期529-538,共10页
Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. Howe... Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. However, safe and effective path planning of multiple unmanned aerial vehicles(UAVs)in the cramped environment is always challenging: conflicts with each other are frequent because of high-density flight paths, collision probability increases because of space constraints, and the search space increases significantly, including time scale, 3D scale and model scale. Thus, this paper proposes a hierarchical collaborative planning framework with a conflict avoidance module at the high level and a path generation module at the low level. The enhanced conflict-base search(ECBS) in our framework is improved to handle the conflicts in the global path planning and avoid the occurrence of local deadlock. And both the collision and kinematic models of UAVs are considered to improve path smoothness and flight safety. Moreover, we specifically designed and published the cramped environment test set containing various unique obstacles to evaluating our framework performance thoroughly. Experiments are carried out relying on Rviz, with multiple flight missions: random, opposite, and staggered, which showed that the proposed method can generate smooth cooperative paths without conflict for at least 60 UAVs in a few minutes.The benchmark and source code are released in https://github.com/inin-xingtian/multi-UAVs-path-planner. 展开更多
关键词 Collision avoidance conflict resolution multi-unmanned aerial vehicles(uavs)system path planning
下载PDF
Real-time UAV path planning based on LSTM network
4
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(uav) long short-term memory(LSTM)
下载PDF
Optimal search path planning of UUV in battlefeld ambush scene
5
作者 Wei Feng Yan Ma +3 位作者 Heng Li Haixiao Liu Xiangyao Meng Mo Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期541-552,共12页
Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical ... Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat. 展开更多
关键词 Battlefield ambush Optimal search path planning UUV path planning Probability of cooperative search
下载PDF
Ground threat prediction-based path planning of unmanned autonomous helicopter using hybrid enhanced artificial bee colony algorithm
6
作者 Zengliang Han Mou Chen +1 位作者 Haojie Zhu Qingxian Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期1-22,共22页
Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a gro... Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method. 展开更多
关键词 UAH path planning Ground threat prediction Hybrid enhanced Collaborative thinking
下载PDF
A Reverse Path Planning Approach for Enhanced Performance of Multi-Degree-of-Freedom Industrial Manipulators
7
作者 Zhiwei Lin Hui Wang +3 位作者 Tianding Chen Yingtao Jiang Jianmei Jiang Yingpin Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1357-1379,共23页
In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking.... In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking.While Multi-Degree-of-Freedom(MDOF)manipulators offer kinematic redundancy,aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites,their path planning entails intricate multiobjective optimization,encompassing path,posture,and joint motion optimization.Achieving satisfactory results in practical scenarios remains challenging.In response,this study introduces a novel Reverse Path Planning(RPP)methodology tailored for industrial manipulators.The approach commences by conceptualizing the manipulator’s end-effector as an agent within a reinforcement learning(RL)framework,wherein the state space,action set,and reward function are precisely defined to expedite the search for an initial collision-free path.To enhance convergence speed,the Q-learning algorithm in RL is augmented with Dyna-Q.Additionally,we formulate the cylindrical bounding box of the manipulator based on its Denavit-Hartenberg(DH)parameters and propose a swift collision detection technique.Furthermore,the motion performance of the end-effector is refined through a bidirectional search,and joint weighting coefficients are introduced to mitigate motion in high-power joints.The efficacy of the proposed RPP methodology is rigorously examined through extensive simulations conducted on a six-degree-of-freedom(6-DOF)manipulator encountering two distinct obstacle configurations and target positions.Experimental results substantiate that the RPP method adeptly orchestrates the computation of the shortest collision-free path while adhering to specific posture constraints at the target point.Moreover,itminimizes both posture angle deviations and joint motion,showcasing its prowess in enhancing the operational performance of MDOF industrial manipulators. 展开更多
关键词 Reverse path planning Dyna-Q bidirectional search posture angle joint motion
下载PDF
Distributed collaborative complete coverage path planning based on hybrid strategy
8
作者 ZHANG Jia DU Xin +1 位作者 DONG Qichen XIN Bin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期463-472,共10页
Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm ... Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably. 展开更多
关键词 multi-agent cooperation unmanned aerial vehicles(uav) distributed algorithm complete coverage path planning(CCPP)
下载PDF
Energy-efficient joint UAV secure communication and 3D trajectory optimization assisted by reconfigurable intelligent surfaces in the presence of eavesdroppers
9
作者 Huang Hailong Mohsen Eskandari +1 位作者 Andrey V.Savkin Wei Ni 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期537-543,共7页
We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reco... We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations. 展开更多
关键词 Unmanned aerial systems(UASs) Unmanned aerial vehicle(uav) Communication security Eaves-dropping Reconfigurable intelligent surfaces(RIS) Autonomous navigation and placement path planning Model predictive control
下载PDF
Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm
10
作者 Xiaoge Wei Yuming Zhang +2 位作者 Huaitao Song Hengjie Qin Guanjun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1295-1316,共22页
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi... Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential. 展开更多
关键词 Sparrow search algorithm optimization and improvement function test set evacuation path planning
下载PDF
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
11
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth Sorting Fast Search algorithm Underwater gravity-aided navigation path planning efficiency Quick Rapidly-exploring Random Trees*(QRRT*)
下载PDF
Energy-Efficient UAVs Coverage Path Planning Approach
12
作者 Gamil Ahmed Tarek Sheltami +1 位作者 Ashraf Mahmoud Ansar Yasar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3239-3263,共25页
Unmanned aerial vehicles(UAVs),commonly known as drones,have drawn significant consideration thanks to their agility,mobility,and flexibility features.They play a crucial role in modern reconnaissance,inspection,intel... Unmanned aerial vehicles(UAVs),commonly known as drones,have drawn significant consideration thanks to their agility,mobility,and flexibility features.They play a crucial role in modern reconnaissance,inspection,intelligence,and surveillance missions.Coverage path planning(CPP)which is one of the crucial aspects that determines an intelligent system’s quality seeks an optimal trajectory to fully cover the region of interest(ROI).However,the flight time of the UAV is limited due to a battery limitation and may not cover the whole region,especially in large region.Therefore,energy consumption is one of the most challenging issues that need to be optimized.In this paper,we propose an energy-efficient coverage path planning algorithm to solve the CPP problem.The objective is to generate a collision-free coverage path that minimizes the overall energy consumption and guarantees covering the whole region.To do so,the flight path is optimized and the number of turns is reduced to minimize the energy consumption.The proposed approach first decomposes the ROI into a set of cells depending on a UAV camera footprint.Then,the coverage path planning problem is formulated,where the exact solution is determined using the CPLEX solver.For small-scale problems,the CPLEX shows a better solution in a reasonable time.However,the CPLEX solver fails to generate the solution within a reasonable time for large-scale problems.Thus,to solve the model for large-scale problems,simulated annealing forCPP is developed.The results show that heuristic approaches yield a better solution for large-scale problems within amuch shorter execution time than the CPLEX solver.Finally,we compare the simulated annealing against the greedy algorithm.The results show that simulated annealing outperforms the greedy algorithm in generating better solution quality. 展开更多
关键词 Coverage path planning MILP CPLEX solver energy model optimization region of interest area of interest
下载PDF
DQN-Based Proactive Trajectory Planning of UAVs in Multi-Access Edge Computing
13
作者 Adil Khan Jinling Zhang +3 位作者 Shabeer Ahmad Saifullah Memon Babar Hayat Ahsan Rafiq 《Computers, Materials & Continua》 SCIE EI 2023年第3期4685-4702,共18页
The main aim of future mobile networks is to provide secure,reliable,intelligent,and seamless connectivity.It also enables mobile network operators to ensure their customer’s a better quality of service(QoS).Nowadays... The main aim of future mobile networks is to provide secure,reliable,intelligent,and seamless connectivity.It also enables mobile network operators to ensure their customer’s a better quality of service(QoS).Nowadays,Unmanned Aerial Vehicles(UAVs)are a significant part of the mobile network due to their continuously growing use in various applications.For better coverage,cost-effective,and seamless service connectivity and provisioning,UAVs have emerged as the best choice for telco operators.UAVs can be used as flying base stations,edge servers,and relay nodes in mobile networks.On the other side,Multi-access EdgeComputing(MEC)technology also emerged in the 5G network to provide a better quality of experience(QoE)to users with different QoS requirements.However,UAVs in a mobile network for coverage enhancement and better QoS face several challenges such as trajectory designing,path planning,optimization,QoS assurance,mobilitymanagement,etc.The efficient and proactive path planning and optimization in a highly dynamic environment containing buildings and obstacles are challenging.So,an automated Artificial Intelligence(AI)enabled QoSaware solution is needed for trajectory planning and optimization.Therefore,this work introduces a well-designed AI and MEC-enabled architecture for a UAVs-assisted future network.It has an efficient Deep Reinforcement Learning(DRL)algorithm for real-time and proactive trajectory planning and optimization.It also fulfills QoS-aware service provisioning.A greedypolicy approach is used to maximize the long-term reward for serving more users withQoS.Simulation results reveal the superiority of the proposed DRL mechanism for energy-efficient and QoS-aware trajectory planning over the existing models. 展开更多
关键词 Multi-access edge computing uavS trajectory planning QoS assurance reinforcement learning deep Q network
下载PDF
UAV penetration mission path planning based on improved holonic particle swarm optimization
14
作者 LUO Jing LIANG Qianchao LI Hao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期197-213,共17页
To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on impr... To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on improved holonic particle swarm optimization(IHPSO). Firstly, the requirements of terrain threat, radar detection, and penetration time in the process of UAV penetration are quantified. Regarding radar threats, a radar echo analysis method based on radar cross section(RCS)and the spatial situation is proposed to quantify the concealment of UAV penetration. Then the structure-particle swarm optimization(PSO) algorithm is improved from three aspects.First, the conversion ability of the search strategy is enhanced by using the system clustering method and the information entropy grouping strategy instead of random grouping and constructing the state switching conditions based on the fitness function.Second, the unclear setting of iteration numbers is addressed by using particle spacing to create the termination condition of the algorithm. Finally, the trajectory is optimized to meet the intended requirements by building a predictive control model and using the IHPSO for simulation verification. Numerical examples show the superiority of the proposed method over the existing PSO methods. 展开更多
关键词 path planning network radar holonic structure particle swarm algorithm(PSO) predictive control model
下载PDF
Cooperative Sampling Path Planning of Underwater Glider Fleet with Simultaneous Launch and Recovery
15
作者 ZANG Wenchuan SONG Dalei YAO Peng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第4期975-982,共8页
As low-cost and highly autonomous ocean observation platforms,underwater gliders encounter risks during their launch and recovery,especially when coordinating multi-glider deployments.This work focuses on cooperative ... As low-cost and highly autonomous ocean observation platforms,underwater gliders encounter risks during their launch and recovery,especially when coordinating multi-glider deployments.This work focuses on cooperative path planning of an underwater glider fleet with simultaneous launch and recovery to enhance the autonomy of sampling and reduce deployment risks.Specifically,the gliders collaborate to achieve sampling considering the specified routines of interest.The overall paths to be planned are divided into four rectangular parts with the same starting point,and each glider is assigned a local sampling route.A clipped-oriented line-of-sight algorithm is proposed to ensure the coverage of the desired edges.The pitch angle of the glider is selected as the optimizing parameter to coordinate the overall progress considering the susceptibility of gliders to currents and the randomness of paths produced by complex navigational strategies.Therefore,a multi-actuation deep-Q network algorithm is proposed to ensure simultaneous launch and recovery.Simulation results demonstrate the acceptable effectiveness of the proposed method. 展开更多
关键词 underwater glider fleet cooperative sampling path planning simultaneous launch and recovery clipped-oriented line-ofsight multi-actuation deep-Q network
下载PDF
Research of Electric Cable Path Planning Based on Heuristic Optimization Algorithm in Mixed-Land Scenario
16
作者 Tianfeng Xu Tao Wang +4 位作者 Chengming Ye Jing Zhang Peng Xi Yunhui Chen Gengwu Zhang 《Energy Engineering》 EI 2023年第11期2629-2650,共22页
In order to improve the reliability of power supply,the sophisticated design of the structure of electric cable network has become an important issue for modern urban distribution networks.In this paper,an electric ca... In order to improve the reliability of power supply,the sophisticated design of the structure of electric cable network has become an important issue for modern urban distribution networks.In this paper,an electric cable path planning model based on heuristic optimization algorithm considering mixed-land scenario is proposed.Firstly,based on different land samples,the kernel density estimation(KDE)and the analytic hierarchy process(AHP)are used to estimate the construction cost of each unit grid,in order to construct the objective function of comprehensive investment for electric cable loop network.Then,the ant colony optimization(ACO)was improved in pheromone concentration,factor increment and search direction to accelerate the solving speed,and the cable path planning result with minimum construction cost is obtained.Finally,the feeder’s tie line of the cable loop network is planned by the genetic algorithm(GA)to achieve the minimum operating cost.In the case analysis,compared with the traditional method,not only the subjective factors in the process of investment estimation can be avoided,but also the speed of model solving and the quality of the optimal solution are improved. 展开更多
关键词 Cable loop network path planning mixed-land KDE improved ACO GA
下载PDF
Modeling of UAV path planning based on IMM under POMDP framework 被引量:4
17
作者 YANG Qiming ZHANG Jiandong SHI Guoqing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期545-554,共10页
In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the PO... In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the POMDP framework. The elements of the POMDP model are analyzed and described. The state transfer law in the model can be described by the method of interactive multiple model (IMM) due to the diversity of the target motion law, which is used to switch the motion model to accommodate target maneuvers, and hence improving the tracking accuracy. The simulation results show that the model can achieve efficient planning for the UAV route, and effective tracking for the target. Furthermore, the path planned by this model is more reasonable and efficient than that by using the single state transition law. 展开更多
关键词 PARTIALLY OBSERVABLE MARKOV decision process (POMDP) interactive multiple model (IMM) filtering path planning target tracking state transfer law
下载PDF
Path planning method for controlling multi-UAVs to reach multi-waypoints simultaneously under the view of visual navigation
18
作者 杨东晓 李杰 +1 位作者 李大林 关震宇 《Journal of Beijing Institute of Technology》 EI CAS 2013年第3期308-312,共5页
There is a high demand for unmanned aerial vehicle( UAV) flight stability when using vision as a detection method for navigation control. To meet such demand,a new path planning method for controlling multi-UAVs is st... There is a high demand for unmanned aerial vehicle( UAV) flight stability when using vision as a detection method for navigation control. To meet such demand,a new path planning method for controlling multi-UAVs is studied to reach multi-waypoints simultaneously under the view of visual navigation technology. A model based on the stable-shortest pythagorean-hodograph( PH) curve is established,which could not only satisfy the demands of visual navigation and control law,but also be easy to compute. Based on the model,a planning algorithm to guide multi-UAVs to reach multiwaypoints at the same time without collisions is developed. The simulation results show that the paths have shorter distance and smaller curvature than traditional methods,which could help to avoid collisions. 展开更多
关键词 自动化 自动控制 控制理论 自动化系统
下载PDF
Trajectory Planning for OTFS-Based UAV Communications 被引量:1
19
作者 Rui Han Jiahao Ma Lin Bai 《China Communications》 SCIE CSCD 2023年第1期114-124,共11页
Unmanned aerial vehicles(UAVs)have attracted growing research interests in recent years,which can be used as cost-effective aerial platforms to transmit collected data packets to ground access points(APs).Thus,it is c... Unmanned aerial vehicles(UAVs)have attracted growing research interests in recent years,which can be used as cost-effective aerial platforms to transmit collected data packets to ground access points(APs).Thus,it is crucial to investigate robust airto-ground(A2G)wireless links for high-speed UAVs.However,the A2G wireless link is unstable as it suffers from large path-loss and severe Doppler effect due to the high mobility of UAVs.In order to meet these challenges,we propose an orthogonal time frequency space(OTFS)-based UAV communication system to relief the Doppler effect.Besides,considering that the energy of UAV is limited,we optimize the trajectory planning of UAV to minimize the energy consumption under the constraints of bit error rate(BER)and transmission rate,where the Doppler compensation is taken into account.Simulation results show that the performance of OTFS-based UAV system is superior to orthogonal frequency division multiplexing(OFDM)-based UAV systems,which can accomplish transmission tasks over shorter distances with lower energy consumption. 展开更多
关键词 orthogonal time frequency space(OTFS) orthogonal frequency division multiplexing(ofDM) unmanned aerial vehicle(uav) 6G trajectory planning
下载PDF
A review:On path planning strategies for navigation of mobile robot 被引量:61
20
作者 B.K. Patle Ganesh Babu L +2 位作者 Anish Pandey D.R.K. Parhi A. Jagadeesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第4期582-606,共25页
This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path plannin... This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path planning strategies in various environmental conditions and to identify research gap.The classical approaches such as cell decomposition(CD),roadmap approach(RA),artificial potential field(APF);reactive approaches such as genetic algorithm(GA),fuzzy logic(FL),neural network(NN),firefly algorithm(FA),particle swarm optimization(PSO),ant colony optimization(ACO),bacterial foraging optimization(BFO),artificial bee colony(ABC),cuckoo search(CS),shuffled frog leaping algorithm(SFLA)and other miscellaneous algorithms(OMA)are considered for study.The navigation over static and dynamic condition is analyzed(for single and multiple robot systems)and it has been observed that the reactive approaches are more robust and perform well in all terrain when compared to classical approaches.It is also observed that the reactive approaches are used to improve the performance of the classical approaches as a hybrid algorithm.Hence,reactive approaches are more popular and widely used for path planning of mobile robot.The paper concludes with tabular data and charts comparing the frequency of individual navigational strategies which can be used for specific application in robotics. 展开更多
关键词 Mobile robot NAVIGATION path planning CLASSICAL APPROACHES Reactive APPROACHES Artificial INTELLIGENCE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部