The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elem...The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elements. Aiming at the problem of insufficient accuracy of the existing physical models for predicting the peak overpressure of ground reflected waves, two physics-informed machine learning models are constructed. The results demonstrate that the machine learning models, which incorporate physical information by predicting the deviation between the physical model and actual values and adding a physical loss term in the loss function, can accurately predict both the training and out-oftraining dataset. Compared to existing physical models, the average relative error in the predicted training domain is reduced from 17.459%-48.588% to 2%, and the proportion of average relative error less than 20% increased from 0% to 59.4% to more than 99%. In addition, the relative average error outside the prediction training set range is reduced from 14.496%-29.389% to 5%, and the proportion of relative average error less than 20% increased from 0% to 71.39% to more than 99%. The inclusion of a physical loss term enforcing monotonicity in the loss function effectively improves the extrapolation performance of machine learning. The findings of this study provide valuable reference for explosion hazard assessment and anti-explosion structural design in various fields.展开更多
Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field exper...Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field experiments and a systematic numerical analysis were conducted.A high-fidelity finite element model developed using AUTODYN was first validated using blast data collected from field tests conducted in this and previous studies.A quantitative analysis was then performed to determine the influence of the charge shape,aspect ratio(length to diameter),orientation,and detonation configuration on the characteristics and distributions of the blast loading(incident peak overpressure and impulse)according to scaled distance.The results revealed that the secondary peak overpressure generated by a cylindrical charge was mainly distributed along the axial direction and was smaller than the overpressure generated by an equivalent spherical charge.The effects of charge shape on the blast loading at 45°and 67.5°in the axial plane could be neglected at scaled distances greater than 2 m/kg^(1/3);the effect of aspect ratios greater than 2 on the peak overpressure in the 90°(radial)direction could be neglected at all scaled distances;and double-end detonation increased the radial blast loading by up to 60%compared to singleend detonation.Finally,an empirical cylindrical charge blast loading model was developed considering the influences of charge aspect ratio,orientation,and detonation configuration.The results obtained in this study can serve as a reference for the design of blast tests using cylindrical charges and aid engineers in the design of blast-resistant structures.展开更多
In the analysis of a structure subjected to an explosion event, the determination of the blast load constitutes a crucial step. The effect of the blast load on the structure depends not only on the peak shock overpres...In the analysis of a structure subjected to an explosion event, the determination of the blast load constitutes a crucial step. The effect of the blast load on the structure depends not only on the peak shock overpressure, but also the impulse (hence the duration). For structures with a regular geometry, the blast load may be fairly well estimated using appropriate empirical formulae; however, for more complex situations, a direct simulation using appropriate computational techniques is necessary. This paper presents a numerical simulation study on the prediction of the blast load in free air using a hydrocode, with focus on the sensitivity of the simulated blast load to the mesh grid size. The simulation results are compared with empirical predictions. It is found that the simulated blast load is sensitive to the mesh size, especially in the close-in range, and with a practically affordable mesh grid density, the blast load tends to be systematically underestimated. The study is extended to internal blast cases. An example concrete slab under internal explosion is analyzed using a coupled analysis scheme. The internal blast load from the simulation is examined and the response of the RC slab is commented.展开更多
In order to investigate the effect of variation in the distribution of gas on explosion propagation characteristics in coal mines, experiments were carried out in two different channels with variation in gas concentra...In order to investigate the effect of variation in the distribution of gas on explosion propagation characteristics in coal mines, experiments were carried out in two different channels with variation in gas concentration and geometry. Flame and pressure transducers were used to track the explosion front velocity. The flame speed (Sf) showed a slight downward trend while the methane concentration varied from 10% to 3% in the experimental channel. The peak overpressure (Pmax) dropped dramatically when compared with normal conditions. As well, the values of Pmax and Sf decreased when the methane concentration dropped from 8% to 6%. The flame speed in the channel, connected to a cylinder with a length varying from 0.5 to 2 m, was greater than that in the normal channel. The peak overpressure was also higher than that under normal conditions because of a higher flame speed and stronger pressure piling up. The values of Pmax and Sf increased with an increase in cylinder length. The research results indicate that damage caused by explosions can be reduced by decreasing the gas concentration, which should be immediately detected in roadways with large cross-sections because of the possibility of greater destruction caused by more serious explosions.展开更多
In order to reveal the effect of turnings on explosion propagation, experiments were performed in three different pipes (single bend, U-shaped pipe and Z-shaped pipe). Flame and pressure transducers were used to tra...In order to reveal the effect of turnings on explosion propagation, experiments were performed in three different pipes (single bend, U-shaped pipe and Z-shaped pipe). Flame and pressure transducers were used to track the velocity at the explosion front. When the pipes were filled with methane, the explosion strength was significantly enhanced due to the turbulence induced by increasing the number of turnings, while the flame speed (Sf) and peak overpressure (ΔPmax) increased dramatically. In addition, the strength of the explosion increased in violence as a function of the number of turnings. However, when the bend was without methane, the turnings weakened the strength of the explosion compared with the ordinary pipe, shown by the decrease in the values of ΔPmax and Sf. In addition, the propagation characteristics in a U-shaped pipe were similar to those in a Z-shaped pipe and the values of APmax and Sf were also close. The results show that the explosion propagation characteristics largely depend on gas distribution in the pipes and the number of turnings. The different directions of the turnings had no effect.展开更多
The explosion inside tunnel would generate blast wave which transmits through the longitudinal tunnel. Because of the close-in effects of the tunnel and the reflection by the confining tunnel structure, blast wave pro...The explosion inside tunnel would generate blast wave which transmits through the longitudinal tunnel. Because of the close-in effects of the tunnel and the reflection by the confining tunnel structure, blast wave propagation inside tunnel is distinguished from that in air. When the explosion happens inside tunnel, the overpressure peak is higher than that of explosion happening in air. The continuance time of the blast wave also becomes longer. With the help of the numerical simulation finite element software LS-DYNA, a three-dimensional nonlinear dynamic simulation analysis for an explosion experiment inside tunnel was carried out. LS-DYNA is a fully integrated analysis program specifically designed for nonlinear dynamics and large strain problems. Compared with the experimental results, the simulation results have made the material parameters of numerical simulation model available. By using the model and the same material parameters, many results were adopted by calculating the model under different TNT explosion dynamites. Then the method of dimensional analysis was used for the simulation results. As overpressures of the explosion blast wave are the governing factor in the tunnel responses, a formula for the explosion blast wave over-pressure at a certain distance from the detonation center point inside the tunnel was derived by using the dimensional analysis theory. By comparing the results computed by the formula with experimental results which were obtained before, the formula was proved to be very applicable at some instance. The research may be helpful to estimate rapidly the effect of internal explosion of tunnel on the structure.展开更多
文摘The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elements. Aiming at the problem of insufficient accuracy of the existing physical models for predicting the peak overpressure of ground reflected waves, two physics-informed machine learning models are constructed. The results demonstrate that the machine learning models, which incorporate physical information by predicting the deviation between the physical model and actual values and adding a physical loss term in the loss function, can accurately predict both the training and out-oftraining dataset. Compared to existing physical models, the average relative error in the predicted training domain is reduced from 17.459%-48.588% to 2%, and the proportion of average relative error less than 20% increased from 0% to 59.4% to more than 99%. In addition, the relative average error outside the prediction training set range is reduced from 14.496%-29.389% to 5%, and the proportion of relative average error less than 20% increased from 0% to 71.39% to more than 99%. The inclusion of a physical loss term enforcing monotonicity in the loss function effectively improves the extrapolation performance of machine learning. The findings of this study provide valuable reference for explosion hazard assessment and anti-explosion structural design in various fields.
基金supported by the National Natural Science Foundation of China[No.51978166]。
文摘Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field experiments and a systematic numerical analysis were conducted.A high-fidelity finite element model developed using AUTODYN was first validated using blast data collected from field tests conducted in this and previous studies.A quantitative analysis was then performed to determine the influence of the charge shape,aspect ratio(length to diameter),orientation,and detonation configuration on the characteristics and distributions of the blast loading(incident peak overpressure and impulse)according to scaled distance.The results revealed that the secondary peak overpressure generated by a cylindrical charge was mainly distributed along the axial direction and was smaller than the overpressure generated by an equivalent spherical charge.The effects of charge shape on the blast loading at 45°and 67.5°in the axial plane could be neglected at scaled distances greater than 2 m/kg^(1/3);the effect of aspect ratios greater than 2 on the peak overpressure in the 90°(radial)direction could be neglected at all scaled distances;and double-end detonation increased the radial blast loading by up to 60%compared to singleend detonation.Finally,an empirical cylindrical charge blast loading model was developed considering the influences of charge aspect ratio,orientation,and detonation configuration.The results obtained in this study can serve as a reference for the design of blast tests using cylindrical charges and aid engineers in the design of blast-resistant structures.
文摘In the analysis of a structure subjected to an explosion event, the determination of the blast load constitutes a crucial step. The effect of the blast load on the structure depends not only on the peak shock overpressure, but also the impulse (hence the duration). For structures with a regular geometry, the blast load may be fairly well estimated using appropriate empirical formulae; however, for more complex situations, a direct simulation using appropriate computational techniques is necessary. This paper presents a numerical simulation study on the prediction of the blast load in free air using a hydrocode, with focus on the sensitivity of the simulated blast load to the mesh grid size. The simulation results are compared with empirical predictions. It is found that the simulated blast load is sensitive to the mesh size, especially in the close-in range, and with a practically affordable mesh grid density, the blast load tends to be systematically underestimated. The study is extended to internal blast cases. An example concrete slab under internal explosion is analyzed using a coupled analysis scheme. The internal blast load from the simulation is examined and the response of the RC slab is commented.
基金provided by the National Natural Science Foundation of China (No.50574093)the Key Program of the National Nature Science of China (No.50534090)+2 种基金the National Basic Research and Development Program of China (No.2005CB221506)the National Science Foundation for Young Scholars of China (No.50804048)the National Key Technology Research and Development Program (Nos.2006BAK03B04 and 2007 BAK29B01)
文摘In order to investigate the effect of variation in the distribution of gas on explosion propagation characteristics in coal mines, experiments were carried out in two different channels with variation in gas concentration and geometry. Flame and pressure transducers were used to track the explosion front velocity. The flame speed (Sf) showed a slight downward trend while the methane concentration varied from 10% to 3% in the experimental channel. The peak overpressure (Pmax) dropped dramatically when compared with normal conditions. As well, the values of Pmax and Sf decreased when the methane concentration dropped from 8% to 6%. The flame speed in the channel, connected to a cylinder with a length varying from 0.5 to 2 m, was greater than that in the normal channel. The peak overpressure was also higher than that under normal conditions because of a higher flame speed and stronger pressure piling up. The values of Pmax and Sf increased with an increase in cylinder length. The research results indicate that damage caused by explosions can be reduced by decreasing the gas concentration, which should be immediately detected in roadways with large cross-sections because of the possibility of greater destruction caused by more serious explosions.
基金Financial support for this work, provided by the National Natural Science Foundation of China (No.50574093)the Key Program of the National Natural Science Foundation of China (No.50534090)+3 种基金the National Basic Research and Development Program of China (No.2005CB221506)the National Science Foundation for Young Scholars of China (No.50804048)the National Key Technology R&D Program (No.2007BAK29B01) Research Innovation Program for College Graduates of Jiangsu Provincethe Open Foundation of State Key Laboratory of Explosion Science and Technology (No.KFJJ10-19M)
文摘In order to reveal the effect of turnings on explosion propagation, experiments were performed in three different pipes (single bend, U-shaped pipe and Z-shaped pipe). Flame and pressure transducers were used to track the velocity at the explosion front. When the pipes were filled with methane, the explosion strength was significantly enhanced due to the turbulence induced by increasing the number of turnings, while the flame speed (Sf) and peak overpressure (ΔPmax) increased dramatically. In addition, the strength of the explosion increased in violence as a function of the number of turnings. However, when the bend was without methane, the turnings weakened the strength of the explosion compared with the ordinary pipe, shown by the decrease in the values of ΔPmax and Sf. In addition, the propagation characteristics in a U-shaped pipe were similar to those in a Z-shaped pipe and the values of APmax and Sf were also close. The results show that the explosion propagation characteristics largely depend on gas distribution in the pipes and the number of turnings. The different directions of the turnings had no effect.
基金Supported by National Natural Science Foundation of China(No.50678094)
文摘The explosion inside tunnel would generate blast wave which transmits through the longitudinal tunnel. Because of the close-in effects of the tunnel and the reflection by the confining tunnel structure, blast wave propagation inside tunnel is distinguished from that in air. When the explosion happens inside tunnel, the overpressure peak is higher than that of explosion happening in air. The continuance time of the blast wave also becomes longer. With the help of the numerical simulation finite element software LS-DYNA, a three-dimensional nonlinear dynamic simulation analysis for an explosion experiment inside tunnel was carried out. LS-DYNA is a fully integrated analysis program specifically designed for nonlinear dynamics and large strain problems. Compared with the experimental results, the simulation results have made the material parameters of numerical simulation model available. By using the model and the same material parameters, many results were adopted by calculating the model under different TNT explosion dynamites. Then the method of dimensional analysis was used for the simulation results. As overpressures of the explosion blast wave are the governing factor in the tunnel responses, a formula for the explosion blast wave over-pressure at a certain distance from the detonation center point inside the tunnel was derived by using the dimensional analysis theory. By comparing the results computed by the formula with experimental results which were obtained before, the formula was proved to be very applicable at some instance. The research may be helpful to estimate rapidly the effect of internal explosion of tunnel on the structure.