To clarify the response and adaptability of peanut under salt stress,Huayu 25 was used as the material,and non-salt stress(CK),0.15% salt stress(S1),and 0.3% salt stress(S2) were applied as three treatments.The study ...To clarify the response and adaptability of peanut under salt stress,Huayu 25 was used as the material,and non-salt stress(CK),0.15% salt stress(S1),and 0.3% salt stress(S2) were applied as three treatments.The study analysed the effects of salt stress on photosynthetic characteristics,photosynthetic substances accumulation and distribution as well as the ecological adaptability of peanuts.The results showed that net photosynthetic rate(Pn),SPAD value,leaf area,and peanut yield were reduced under salt stress.Pn in CK was 13.71 and 28.72% higher than that in S1 and S2 at the 50 th day after planting,respectively.At the same growth period,the SPAD value among treatments was ranked as follows: CK>S1>S2.The 100-pod mass,100-kernel mass,kernel rate to pod,and pod mass per plant were reduced under salt stress,and the trend was CK>S1>S2.The distribution proportion of dry matter in different organs of peanut plant was changed to adapt to such stress.Roots under salt stress intensively distributed in a 0-40 cm soil layer for salt resistance.Dry mass proportion in stems and pods increased during the vegetative stage and early period of reproductive stage,respectively.The maximum growth rates of the pod volume,pod dry weight,and seed kernel dry weight all declined,and the pod and kernel volume at harvest were reduced,improving the seed plumpness under salt stress.This finding could be useful in growing peanut in saline soil.展开更多
The abundance of broad-leaved weeds in peanut fields represents the handicap in weed management programs, since limited specific herbicides can be recommended to control them. Moreover, the physio-biochemical constitu...The abundance of broad-leaved weeds in peanut fields represents the handicap in weed management programs, since limited specific herbicides can be recommended to control them. Moreover, the physio-biochemical constituents and nutritional status in peanut plants as affected by available herbicides, i.e., bentazone under water stress conditions are not well known. Therefore, field trials were conducted during the growing seasons in 2016 and 2017 to investigate the interactional impact of irrigation levels(I_(50), I_(75) and I_(100), representing irrigation by 50%, 75% and 100% of crop evapotranspiration, respectively) and weed control practices(bentazone, bentazone+hoeing once, hoeing twice and weedy check as control) on dominant broad-leaved weeds as well as peanut physiological and agronomic traits. Result indicated that the efficiency of weed control for each weeded treatment under I_(50) significantly equaled with its counterpart under I_(75) or I_(100). Bentazone+hoeing once diminished weed biomass by 89.3% and enhanced chlorophyll content of peanut plants by 51.2%. Bentazone relatively caused a reduction in carotenoides. Hoeing twice and bentazone+hoeing once under I_(100) in both growing seasons as well as hoeing twice under I_(75) in 2017 were the superior combinations for boosting pod yield of peanut plants. Treatment of bentazone+hoeing once and I_(75) recorded the lowest reduction in N utilization percentage and the highest increase in potassium utilization percentage of peanut plants. Eliminating weeds enhanced water use efficiency by 37.8%, 49.6% and 34.7% under I_(50), I_(75) and I_(100), respectively. In conclusion, peanut seems to be tolerant to bentazone at moderate water supply, thus it can be safely used in controlling the associated broad-leaved weeds.展开更多
基金funded by the earmarked fund for China Agriculture Research System(CARS-13)the National Natural Science Foundation of China(31771732)+3 种基金the Shandong Modern Agriculture Innovation Team,China(peanut)(SDAIT-04-06)the Key Research and Development Plan of Shandong Province,China(2017CXGC0308)the Key Scientific and Technological Innovation Program of Shandong Academy of Agricultural Sciences,China(CXGC2017D02)the Shandong Provincial Natural Science Foundation,China(ZR2017YL023)
文摘To clarify the response and adaptability of peanut under salt stress,Huayu 25 was used as the material,and non-salt stress(CK),0.15% salt stress(S1),and 0.3% salt stress(S2) were applied as three treatments.The study analysed the effects of salt stress on photosynthetic characteristics,photosynthetic substances accumulation and distribution as well as the ecological adaptability of peanuts.The results showed that net photosynthetic rate(Pn),SPAD value,leaf area,and peanut yield were reduced under salt stress.Pn in CK was 13.71 and 28.72% higher than that in S1 and S2 at the 50 th day after planting,respectively.At the same growth period,the SPAD value among treatments was ranked as follows: CK>S1>S2.The 100-pod mass,100-kernel mass,kernel rate to pod,and pod mass per plant were reduced under salt stress,and the trend was CK>S1>S2.The distribution proportion of dry matter in different organs of peanut plant was changed to adapt to such stress.Roots under salt stress intensively distributed in a 0-40 cm soil layer for salt resistance.Dry mass proportion in stems and pods increased during the vegetative stage and early period of reproductive stage,respectively.The maximum growth rates of the pod volume,pod dry weight,and seed kernel dry weight all declined,and the pod and kernel volume at harvest were reduced,improving the seed plumpness under salt stress.This finding could be useful in growing peanut in saline soil.
文摘The abundance of broad-leaved weeds in peanut fields represents the handicap in weed management programs, since limited specific herbicides can be recommended to control them. Moreover, the physio-biochemical constituents and nutritional status in peanut plants as affected by available herbicides, i.e., bentazone under water stress conditions are not well known. Therefore, field trials were conducted during the growing seasons in 2016 and 2017 to investigate the interactional impact of irrigation levels(I_(50), I_(75) and I_(100), representing irrigation by 50%, 75% and 100% of crop evapotranspiration, respectively) and weed control practices(bentazone, bentazone+hoeing once, hoeing twice and weedy check as control) on dominant broad-leaved weeds as well as peanut physiological and agronomic traits. Result indicated that the efficiency of weed control for each weeded treatment under I_(50) significantly equaled with its counterpart under I_(75) or I_(100). Bentazone+hoeing once diminished weed biomass by 89.3% and enhanced chlorophyll content of peanut plants by 51.2%. Bentazone relatively caused a reduction in carotenoides. Hoeing twice and bentazone+hoeing once under I_(100) in both growing seasons as well as hoeing twice under I_(75) in 2017 were the superior combinations for boosting pod yield of peanut plants. Treatment of bentazone+hoeing once and I_(75) recorded the lowest reduction in N utilization percentage and the highest increase in potassium utilization percentage of peanut plants. Eliminating weeds enhanced water use efficiency by 37.8%, 49.6% and 34.7% under I_(50), I_(75) and I_(100), respectively. In conclusion, peanut seems to be tolerant to bentazone at moderate water supply, thus it can be safely used in controlling the associated broad-leaved weeds.