期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
A comprehensive overview of recent developments on the mechanisms and pathways of ferroptosis in cancer: the potential implications for therapeutic strategies in ovarian cancer
1
作者 Hiroshi Kobayashi Chiharu Yoshimoto +2 位作者 Sho Matsubara Hiroshi Shigetomi Shogo Imanaka 《Cancer Drug Resistance》 2023年第3期547-566,共20页
Cancer cells adapt to environmental changes and alter their metabolic pathways to promote survival and proliferation. Metabolic reprogramming not only allows tumor cells to maintain a reduction-oxidation balance by re... Cancer cells adapt to environmental changes and alter their metabolic pathways to promote survival and proliferation. Metabolic reprogramming not only allows tumor cells to maintain a reduction-oxidation balance by rewiring resources for survival, but also causes nutrient addiction or metabolic vulnerability. Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid peroxides. Excess iron in ovarian cancer amplifies free oxidative radicals and drives the Fenton reaction, thereby inducing ferroptosis. However, ovarian cancer is characterized by ferroptosis resistance. Therefore, the induction of ferroptosis is an exciting new targeted therapy for ovarian cancer. In this review, potential metabolic pathways targeting ferroptosis were summarized to promote anticancer effects, and current knowledge and future perspectives on ferroptosis for ovarian cancer therapy were discussed. Two therapeutic strategies were highlighted in this review: directly inducing the ferroptosis pathway and targeting metabolic vulnerabilities that affect ferroptosis. The overexpression of SLC7A11, a cystine/glutamate antiporter SLC7A11 (also known as xCT), is involved in the suppression of ferroptosis. xCT inhibition by ferroptosis inducers (e.g., erastin) can promote cell death when carbon as an energy source of glucose, glutamine, or fatty acids is abundant. On the contrary, xCT regulation has been reported to be highly dependent on the metabolic vulnerability. Drugs that target intrinsic metabolic vulnerabilities (e.g., GLUT1 inhibitors, PDK4 inhibitors, or glutaminase inhibitors) predispose cancer cells to death, which is triggered by decreased nicotinamide adenine dinucleotide phosphate generation or increased reactive oxygen species accumulation. Therefore, therapeutic approaches that either directly inhibit the xCT pathway or target metabolic vulnerabilities may be effective in overcoming ferroptosis resistance. Real-time monitoring of changes in metabolic pathways may aid in selecting personalized treatment modalities. Despite the rapid development of ferroptosis-inducing agents, therapeutic strategies targeting metabolic vulnerability remain in their infancy. Thus, further studies must be conducted to comprehensively understand the precise mechanism linking metabolic rewiring with ferroptosis. 展开更多
关键词 Ferroptosis GLUTAMINOLYSIS GLYCOLYSIS metabolic vulnerability ovarian cancer pentose phosphate pathway
原文传递
Modules for in vitro metabolic engineering:Pathway assembly for biobased production of value-added chemicals 被引量:5
2
作者 Hironori Taniguchi Kenji Okano Kohsuke Honda 《Synthetic and Systems Biotechnology》 SCIE 2017年第2期65-74,共10页
Bio-based chemical production has drawn attention regarding the realization of a sustainable society.In vitro metabolic engineering is one of the methods used for the bio-based production of value-added chemicals.This... Bio-based chemical production has drawn attention regarding the realization of a sustainable society.In vitro metabolic engineering is one of the methods used for the bio-based production of value-added chemicals.This method involves the reconstitution of natural or artificial metabolic pathways by assembling purified/semi-purified enzymes in vitro.Enzymes from distinct sources can be combined to construct desired reaction cascades with fewer biological constraints in one vessel,enabling easier pathway design with high modularity.Multiple modules have been designed,built,tested,and improved by different groups for different purpose.In this review,we focus on these in vitro metabolic engineering modules,especially focusing on the carbon metabolism,and present an overview of input modules,output modules,and other modules related to cofactor management. 展开更多
关键词 In vitro metabolic engineering Module GLYCOLYSIS pentose phosphate pathway Cofactor management
原文传递
Arginine methylation of ribose-5-phosphate isomerase A senses glucose to promote human colorectal cancer cell survival 被引量:2
3
作者 Jizheng Guo Qixiang Zhang +6 位作者 Ying Su Xiaochen Lu Yiping Wang Miao Yin Weiguo Hu Wenyu Wen Qun-Ying Lei 《Science China(Life Sciences)》 SCIE CAS CSCD 2020年第9期1394-1405,共12页
Cancer cells remodel their metabolic network to adapt to variable nutrient availability. Pentose phosphate pathway(PPP) plays protective and biosynthetic roles by oxidizing glucose to generate reducing power and ribos... Cancer cells remodel their metabolic network to adapt to variable nutrient availability. Pentose phosphate pathway(PPP) plays protective and biosynthetic roles by oxidizing glucose to generate reducing power and ribose. How cancer cells modulate PPP activity in response to glucose supply remains unclear. Here we show that ribose-5-phosphate isomerase A(RPIA), an enzyme in PPP, directly interacts with co-activator associated arginine methyltransferase 1(CARM1) and is methylated at arginine 42(R42). R42 methylation up-regulates the catalytic activity of RPIA. Furthermore, glucose deprivation strengthens the binding of CARM1 with RPIA to induce R42 hypermethylation. Insufficient glucose supply links to RPIA hypermethylation at R42, which increases oxidative PPP flux. RPIA methylation supports ROS clearance by enhancing NADPH production and fuels nucleic acid synthesis by increasing ribose supply. Importantly, RPIA methylation at R42 significantly potentiates colorectal cancer cell survival under glucose starvation. Collectively, RPIA methylation connects glucose availability to nucleotide synthesis and redox homeostasis. 展开更多
关键词 ribose-5-phosphate isomerase A CARM1 arginine methylation pentose phosphate pathway ribulose-5-phosphate reactive oxygen species colorectal cancer
原文传递
PRMT6 promotes tumorigenicity and cisplatin response of lung cancer through triggering 6PGD/ENO1 mediated cell metabolism
4
作者 Mingming Sun Leilei Li +25 位作者 Yujia Niu Yingzhi Wang Qi Yan Fei Xie Yaya Qiao Jiaqi Song Huanran Sun Zhen Li Sizhen Lai Hongkai Chang Han Zhang Jiyan Wang Chenxin Yang Huifang Zhao Junzhen Tan Yanping Li Shuangping Liu Bin Lu Min Liu Guangyao Kong Yujun Zhao Chunze Zhang Shu-Hai Lin Cheng Luo Shuai Zhang Changliang Shan 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第1期157-173,共17页
Metabolic reprogramming is a hallmark of cancer,including lung cancer.However,the exact underlying mechanism and therapeutic potential are largely unknown.Here we report that protein arginine methyltransferase 6(PRMT6... Metabolic reprogramming is a hallmark of cancer,including lung cancer.However,the exact underlying mechanism and therapeutic potential are largely unknown.Here we report that protein arginine methyltransferase 6(PRMT6)is highly expressed in lung cancer and is required for cell metabolism,tumorigenicity,and cisplatin response of lung cancer.PRMT6 regulated the oxidative pentose phosphate pathway(PPP)flux and glycolysis pathway in human lung cancer by increasing the activity of 6-phosphogluconate dehydrogenase(6PGD)and a-enolase(ENO1).Furthermore,PRMT6 methylated R324 of 6PGD to enhancing its activity;while methylation at R9 and R372 of ENO1 promotes formation of active ENO1 dimers and 2-phosphoglycerate(2-PG)binding to ENO1,respectively.Lastly,targeting PRMT6 blocked the oxidative PPP flux,glycolysis pathway,and tumor growth,as well as enhanced the antitumor effects of cisplatin in lung cancer.Together,this study demonstrates that PRMT6 acts as a posttranslational modification(PTM)regulator of glucose metabolism,which leads to the pathogenesis of lung cancer.It was proven that the PRMT6-6PGD/ENO1 regulatory axis is an important determinant of carcinogenesis and may become a promising cancer therapeutic strategy. 展开更多
关键词 Lung cancer Metabolic reprogramming Post-translational modification PRMT6 pentose phosphate pathway flux GLYCOLYSIS 6-Phospho-gluconate dehydrogenase a-enolase ENO1
原文传递
Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma 被引量:30
5
作者 Danyu Du Chan Liu +5 位作者 Mengyao Qin Xiao Zhang Tao Xi Shengtao Yuan Haiping Hao Jing Xiong 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2022年第2期558-580,共23页
Hepatocellular carcinoma(HCC)is an aggressive human cancer with increasing incidence worldwide.Multiple efforts have been made to explore pharmaceutical therapies to treat HCC,such as targeted tyrosine kinase inhibito... Hepatocellular carcinoma(HCC)is an aggressive human cancer with increasing incidence worldwide.Multiple efforts have been made to explore pharmaceutical therapies to treat HCC,such as targeted tyrosine kinase inhibitors,immune based therapies and combination of chemotherapy.However,limitations exist in current strategies including chemoresistance for instance.Tumor initiation and progression is driven by reprogramming of metabolism,in particular during HCC development.Recently,metabolic associated fatty liver disease(MAFLD),a reappraisal of new nomenclature for nonalcoholic fatty liver disease(NAFLD),indicates growing appreciation of metabolism in the pathogenesis of liver disease,including HCC,thereby suggesting new strategies by targeting abnormal metabolism for HCC treatment.In this review,we introduce directions by highlighting the metabolic targets in glucose,fatty acid,amino acid and glutamine metabolism,which are suitable for HCC pharmaceutical intervention.We also summarize and discuss current pharmaceutical agents and studies targeting deregulated metabolism during HCC treatment.Furthermore,opportunities and challenges in the discovery and development of HCC therapy targeting metabolism are discussed. 展开更多
关键词 Metabolic dysregulation Hepatocellular carcinoma GLYCOLYSIS Tricarboxylic acid cycle pentose phosphate pathway Fatty acidβ-oxidation Glutamine metabolism Cancer therapy
原文传递
NADPH debt drives redox bankruptcy:SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation 被引量:7
6
作者 Xiaoguang Liu Yilei Zhang +2 位作者 Li Zhuang Kellen Olszewski Boyi Gan 《Genes & Diseases》 SCIE 2021年第6期731-745,共15页
Cystine/glutamate antiporter solute carrier family 7 member 11(SLC7A11;also known as xCT)plays a key role in antioxidant defense by mediating cystine uptake,promoting glutathione synthesis,and maintaining cell surviva... Cystine/glutamate antiporter solute carrier family 7 member 11(SLC7A11;also known as xCT)plays a key role in antioxidant defense by mediating cystine uptake,promoting glutathione synthesis,and maintaining cell survival under oxidative stress conditions.Recent studies showed that,to prevent toxic buildup of highly insoluble cystine inside cells,cancer cells with high expression of SLC7A11(SLC7A11high)are forced to quickly reduce cystine to more soluble cysteine,which requires substantial NADPH supply from the glucose-pentose phosphate pathway(PPP)route,thereby inducing glucose-and PPP-dependency in SLC7A11high cancer cells.Limiting glucose supply to SLC7A11high cancer cells results in significant NADPH“debt”,redox“bankruptcy”,and subsequent cell death.This review summarizes our current understanding of NADPH-generating and-consuming pathways,discusses the opposing role of SLC7A11 in protecting cells from oxidative stresseinduced cell death such as ferroptosis but promoting glucose starvationeinduced cell death,and proposes the concept that SLC7A11-mediated cystine uptake acts as a double-edged sword in cellular redox regulation.A detailed understanding of SLC7A11 in redox biology may identify metabolic vulnerabilities in SLC7A11high cancer for therapeutic targeting. 展开更多
关键词 CYSTEINE CYSTINE NADPH pentose phosphate pathway SLC7A11 xCT
原文传递
Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver 被引量:2
7
作者 Pierre Theurey Emily Tubbs +7 位作者 Guillaume Vial Julien Jacquemetton Nadia Bendridi Marie-Agnes Chauvin Muhammad Rizwan Alam Muriel Le Romancer Hubert Vidal Jennifer Rieusset 《Journal of Molecular Cell Biology》 SCIE CAS CSCD 2016年第2期129-143,共15页
Mitochondria-associated endoplasmic reticulum membranes(MAM)play a key role in mitochondrial dynamics and function and in hepatic insulin action.Whereas mitochondria are important regulators of energy metabolism,the n... Mitochondria-associated endoplasmic reticulum membranes(MAM)play a key role in mitochondrial dynamics and function and in hepatic insulin action.Whereas mitochondria are important regulators of energy metabolism,the nutritional regulation of MAM in the liver and its role in the adaptation of mitochondria physiology to nutrient availability are unknown.In this study,we found that the fasted to postprandial transition reduced the number of endoplasmic reticulum-mitochondria contact points in mouse liver.Screening of potential hormonal/metabolic signals revealed glucose as the main nutritional regulator of hepatic MAM integrity both in vitro and in vivo.Glucose reduced organelle interactions through the pentose phosphate-protein phosphatase 2A(PP-PP2A)pathway,induced mitochondria fission,and impaired respiration.Blocking MAM reduction counteracted glucose-induced mitochondrial alterations.Furthermore,disruption of MAM integrity mimicked effects of glucose on mitochondria dynamics and function.This glucose-sensing system is deficient in the liver of insulin-resistant ob/ob and cyclophilin D-KO mice,both characterized by chronic disruption of MAM integrity,mitochondrial fission,and altered mitochondrial respiration.These data indicate that MAM contribute to the hepatic glucose-sensing system,allowing regulation of mitochondria dynamics and function during nutritional transition.Chronic disruption of MAM may participate in hepatic mitochondrial dysfunction associated with insulin resistance. 展开更多
关键词 MAM mitochondria dynamics HEPATOCYTES glucose sensing pentose phosphate pathway PP2A
原文传递
Glycolytic Shunts Replenish the Calvin-Benson-Bassham Cycle as Anaplerotic Reactions in Cyanobacteria
8
作者 Alexander Makowka Lars Nichelmann +4 位作者 Dennis Schulze Katharina Spengler Christoph Wittmann Karl Forchhammer Kirstin Gutekunst 《Molecular Plant》 SCIE CAS CSCD 2020年第3期471-482,共12页
The recent discovery of the Entner-Doudoroff(ED)pathway as a third glycolytic route beside Embden-Meyerhof-Parnas(EMP)and oxidative pentose phosphate(OPP)pathway in oxygenic photoautotrophs requires a revision of thei... The recent discovery of the Entner-Doudoroff(ED)pathway as a third glycolytic route beside Embden-Meyerhof-Parnas(EMP)and oxidative pentose phosphate(OPP)pathway in oxygenic photoautotrophs requires a revision of their central carbohydrate metabolism.In this study,unexpectedly,we observed that deletion of the ED pathway alone,and even more pronounced in combination with other glycolytic routes,diminished photoautotrophic growth in continuous light in the cyanobacterium Synechocystis sp.PCC 6803.Furthermore,we found that the ED pathway is required for optimal glycogen catabolism in parallel to an operating Calvin-Benson-Bassham(CBB)cycle.It is counter-intuitive that glycolytic routes,which are a reverse to the CBB cycle and do not provide any additional biosynthetic intermediates,are important under photoautotrophic conditions.However,observations on the ability to reactivate an arrested CBB cycle revealed that they form glycolytic shunts that tap the cellular carbohydrate reservoir to replenish the cycle.Taken together,our results suggest that the classical view of the CBB cycle as an autocatalytic,completely autonomous cycle that exclusively relies on its own enzymes and C02 fixation to regenerate ribulose-1,5-bisphosphate for Rubisco is an oversimplification.We propose that in common with other known autocatalytic cycles,the CBB cycle likewise relies on anaplerotic reactions to compensate for the depletion of intermediates,particularly in transition states and under fluctuating light conditions that are common in nature. 展开更多
关键词 central carbohydrate metabolism Calvin-Benson-Bassham cycle Entner-Doudoroff pathway oxidative pentose phosphate pathway Embden-Meyerhof-Parnas pathway CYANOBACTERIA
原文传递
Cancer metabolism in gastrointestinal cancer
9
作者 Hiroshi Sawayama Nobutomo Miyanari Hideo Baba 《Journal of Cancer Metastasis and Treatment》 CAS 2015年第1期172-182,共11页
Cancer cells exhibit altered glucose metabolism,mitochondrial dysfunction,anaerobic glycolysis and upregulation of the pentose phosphate pathway(PPP).Recent genetic and metabolic analyses have provided insights into t... Cancer cells exhibit altered glucose metabolism,mitochondrial dysfunction,anaerobic glycolysis and upregulation of the pentose phosphate pathway(PPP).Recent genetic and metabolic analyses have provided insights into the molecular mechanisms of genes that are involved in the alteration of cancer metabolism and tumorigenesis.Hypoxic induced factor 1 regulates the reciprocal relationship between glycolysis and oxidative phosphorylation,and p53 also modulates the balance between the glycolytic pathway and oxidative phosphorylation.Mitochondria function in cancer differs from that in normal cells owing to mutations of mitochondrial DNA and alterations of metabolism.Overexpression of transcription factors,metabolite transporters and glycolytic enzymes is observed and associated with poor prognosis,and it may be associated with chemoradiotherapy resistance in multiple cancer cell types.The PPP plays a critical role in regulating cancer cell growth by supplying cells with ribose-5-phosphate and nicotinamide adenine dinucleotide phosphate for detoxifi cation of intra-cellular reactive oxygen species(ROS),reductive biosynthesis and ribose biogenesis.ROS levels increase during carcinogenesis owing to metabolic aberrations.This review discusses alterations of mitochondrial metabolism,anaerobic glycolysis,the PPP and control of ROS levels by the endogenous anti-oxidant system in cancer,as well as the novel small molecules targeting these enzymes or transporters that exert anti-proliferative effects. 展开更多
关键词 ANTI-OXIDANTS cancer metabolism MITOCHONDRIA pentose phosphate pathway reactive oxygen species Warburg effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部