Removing large concentrations of organic pollutants from water efficiently and quickly under visible light is essential to developing photocatalytic technology and improving solar energy efficiency.This study used a s...Removing large concentrations of organic pollutants from water efficiently and quickly under visible light is essential to developing photocatalytic technology and improving solar energy efficiency.This study used a simple hydrothermal method to prepare a non-metallic,S-doped NaTaO_(3)(S-NTO) photocatalyst,which was then loaded onto biochar (BC) to form a S-NTO/BC composite photocatalyst.After uniform loading onto BC,the S-NTO particles transformed from cubic to spherical.The photogenerated electron-hole pair recombination probability of the composite photocatalyst was significantly lower than those of the NTO particles.The light absorption range of the catalyst was effectively widened from 310 nm UV region to visible region.In addition,a dual-effect catalytic system was constructed by introducing peroxymonosulfate (PMS) into the environment of the pollution to be degraded.The Rhodamine B,Methyl Orange,Acid Orange 7,tetracycline,and ciprofloxacin degradation efficiency at 40 mg/L reached 99.6%,99.2%,84.5%,67.1%,and 70.7%,respectively,after irradiation by a 40 W lamps for 90 min.The high-efficiency visible-light catalytic activity of the dual-effect catalytic system was attributed to doping with non-metallic sulfur and loading of catalysts onto BC.The development of this dual-effect catalytic system provides new ideas for quickly and efficiently solving the problem of high-concentration organic pollution in aqueous environments,rationally and fully utilizing solar energy,and expanding the application of photocatalytic technology to practice.展开更多
基金financially supported by the Science and Technology Major Project on Lakes of Inner Mongolia (No.ZDZX2018054)the National Natural Science Foundation of China for Less Developed Regions (No.51868054)+1 种基金Innovation Guide Project of Inner Mongolia Autonomous Region (No.KCBJ2018005)Inner Mongolia University special funds for postgraduate innovation and entrepreneurship (No.11200-121024)。
文摘Removing large concentrations of organic pollutants from water efficiently and quickly under visible light is essential to developing photocatalytic technology and improving solar energy efficiency.This study used a simple hydrothermal method to prepare a non-metallic,S-doped NaTaO_(3)(S-NTO) photocatalyst,which was then loaded onto biochar (BC) to form a S-NTO/BC composite photocatalyst.After uniform loading onto BC,the S-NTO particles transformed from cubic to spherical.The photogenerated electron-hole pair recombination probability of the composite photocatalyst was significantly lower than those of the NTO particles.The light absorption range of the catalyst was effectively widened from 310 nm UV region to visible region.In addition,a dual-effect catalytic system was constructed by introducing peroxymonosulfate (PMS) into the environment of the pollution to be degraded.The Rhodamine B,Methyl Orange,Acid Orange 7,tetracycline,and ciprofloxacin degradation efficiency at 40 mg/L reached 99.6%,99.2%,84.5%,67.1%,and 70.7%,respectively,after irradiation by a 40 W lamps for 90 min.The high-efficiency visible-light catalytic activity of the dual-effect catalytic system was attributed to doping with non-metallic sulfur and loading of catalysts onto BC.The development of this dual-effect catalytic system provides new ideas for quickly and efficiently solving the problem of high-concentration organic pollution in aqueous environments,rationally and fully utilizing solar energy,and expanding the application of photocatalytic technology to practice.