The prevalence of metabolic diseases,some diseases that are seriously harmful for human health and affect the quality of life,is increasing year by year.Early detection and intervention is the common strategy to deal ...The prevalence of metabolic diseases,some diseases that are seriously harmful for human health and affect the quality of life,is increasing year by year.Early detection and intervention is the common strategy to deal with them.Infrared thermography(IRT)is a special medical imaging technology which can capture the changes of skin temperature associated with metabolic disorders.It might be a new method for early detection of metabolic diseases.The purpose of this review is to summarize advances of the use of IRT in evaluating single metabolic disorder such as obesity,hyperglycemia and hypertension,complex metabolic disorders such as metabolic syndrome and target organ damage such as coronary artery atherosclerosis and diabetic foot.The characteristic of thermograms of metabolic disease patients,the changes of thermal maps during the development of the disease,and the lacks in current studies are also discussed in the article.展开更多
The method of infrared thermography to predict the temperature of the sulfide ores has a large error. To solve this problem, the temperature of the sulfide ores is measured by thermal infrared imager and recording the...The method of infrared thermography to predict the temperature of the sulfide ores has a large error. To solve this problem, the temperature of the sulfide ores is measured by thermal infrared imager and recording thermometric instrument contrastively. The main factors, including emissivity, distance, angle and dust concentration that affect the temperature measurement precision, are analyzed. The regression equations about the individual factors and comprehensive factors are obtained by analyzing test data. The application of the regression equations improves the precision of the thermal infrared imager. The geometric information lost in traditional infrared thermometry is determined by visualization grid method and interpolation method, the relationship between the infrared imager and geometry information is established. The geometry location can be measured exactly.展开更多
Fatigue behavior of AZ31B magnesium alloy electron beam welded joint undergoing cyclic loading was investigated by infrared thermography. Temperature evolution throughout a fatigue process was presented and the mechan...Fatigue behavior of AZ31B magnesium alloy electron beam welded joint undergoing cyclic loading was investigated by infrared thermography. Temperature evolution throughout a fatigue process was presented and the mechanism of heat generationwas discussed. Fatigue limit of the welded joint was predicted and the fatigue damage was also assessed based ontheevolution of the temperatureand hotspot zone on the specimen surfaceduring fatigue tests. The presented results show that infrared thermography can not onlyquicklypredict the fatigue behavior of the welded joint, but also qualitatively identify the evolution of fatigue damage in real time. It is found that the predicted fatigue limit agrees well with the conventionalS-Nexperimental results. The evolution of the temperatureand hotspot zone on the specimen surface can be an effectivefatigue damage indicatorfor effectiveevaluationof magnesium alloy electron beam welded joint.展开更多
The fatigue behavior during high cycle fatigue testing and the tensile behavior of 5A06 aluminum alloy considering the anisotropy were studied.Two types of specimens including longitudinal specimen(parallel to the ro...The fatigue behavior during high cycle fatigue testing and the tensile behavior of 5A06 aluminum alloy considering the anisotropy were studied.Two types of specimens including longitudinal specimen(parallel to the rolling direction) and transverse specimen(perpendicular to the rolling direction) were prepared.Infrared thermography was employed to monitor the temperature evolution during the fatigue and tensile tests.The temperature evolution curves in the two directions were contrastively analyzed.It is found that the temperature evolution during fatigue process possesses four stages:initial temperature rise stage,slow temperature decline stage,rapid temperature rise stage,and finial temperature decline stage.The heat generating mechanisms of the four stages are discussed.Obvious differences can be found between the longitudinal specimen and transverse specimen in fatigue strength and fatigue life.The fatigue strength and fatigue life of longitudinal specimen are higher than those of transverse specimen.During the tensile and fatigue testing process,the fracture temperature in the transverse direction are higher than that in the longitudinal direction.The fatigue strength prediction by means of infrared thermography has a good consistency with that by the traditional method.展开更多
Manual inspections of infrastructures such as highway bridge, pavement, dam, and multistoried garage ceiling are time consuming, sometimes can be life threatening, and costly. An automated computerized system can redu...Manual inspections of infrastructures such as highway bridge, pavement, dam, and multistoried garage ceiling are time consuming, sometimes can be life threatening, and costly. An automated computerized system can reduce time, faulty inspection, and cost of inspection. In this study, we developed a computer model using deep learning Convolution Neural Network (CNN), which can be used to automatically detect the crack and non-crack type structure. The goal of this research is to allow application of state-of-the-art deep neural network and Unmanned Aerial Vehicle (UAV) technologies for highway bridge girder inspection. As a pilot study of implementing deep learning in Bridge Girder, we study the recognition, length, and location of crack in the structure of the UTC campus old garage concrete ceiling slab. A total of 2086 images of crack and non-crack were taken from UTC Old Library parking garage ceiling using handheld mobile phone and drone. After training the model shows 98% accuracy with crack and non-crack types of structures.展开更多
In this paper, the use of a signal to noise ratio (SNR) is proposed for the quantification of the goodness of some selected processing techniques of thermographic images, such as differentiated absolute contrast, skew...In this paper, the use of a signal to noise ratio (SNR) is proposed for the quantification of the goodness of some selected processing techniques of thermographic images, such as differentiated absolute contrast, skewness and kurtosis based algorithms, pulsed phase transform, principal component analysis and thermographic signal reconstruction. A new hybrid technique is also applied (PhAC—Phase absolute contrast), it combines three different processing techniques: phase absolute contrast, pulsed phase thermography and thermographic signal reconstruction. The quality of the results is established on the basis of the values of the parameter SNR, assessed for the present defects in the analyzed specimen, which enabled to quantify and compare their identification and the quality of the results of the employed technique.展开更多
The heat generation behaviors of fatigue crack are deeply investigated under different preload forces combing numerical simulation and experiment.Firstly,a multi-contact simulation model is applied to stimulate the cr...The heat generation behaviors of fatigue crack are deeply investigated under different preload forces combing numerical simulation and experiment.Firstly,a multi-contact simulation model is applied to stimulate the crack surfaces contact and the horn-sample contact under ultrasonic excitation for calculating the temperature fields.Then,the ultrasonic infrared thermography testing and the microscope testing are carried out for the heat generation and the plastic deformation behaviors of crack region under different preload forces.On this basis,an indirect observation method based on dots distribution is proposed to estimate the plastic deformation on crack contact surfaces.The obtained results show that the temperature rise of crack region increases with the increase of preload force when the preload force is less than 250 N,while the temperature rise rapidly declines due to the plastic deformation on crack contact surfaces and the inhibition effect when the preload force is 280 N.Moreover,the plastic deformation does not lead to the crack propagation,but reduces the detection repeatability of fatigue crack.This work provides an effective method for optimizing testing conditions in practical testing processes,which will be helpful to the establishment of testing standards for batches of test objects in ultrasonic infrared thermography testing.展开更多
This paper presents two infrared thermography methods with CO2 Laser excitation and microwave excitation applied to defect detection in CFRP. The tests were conducted with two specimens, one with defect, and another o...This paper presents two infrared thermography methods with CO2 Laser excitation and microwave excitation applied to defect detection in CFRP. The tests were conducted with two specimens, one with defect, and another one without defect. On two concrete plates 40 cm× 40 cm× 4.5 cmwere reinforced by CFRP;the defects were made by the absence of adhesive on an area10 cm× 10 cm. The specimens were heated by microwave, generated by a commercial magnetron of 2.45 GHz and guided by a pyramidal horn antenna, with a power of 360 W within 150 s. Another series of the tests was conducted with CO2 Laser, wavelength 10.6 μm, by heating the samples with a power of 300 W within 40 s. An infrared camera sensitive to medium waves in range of 3 - 5 μm, with a detector of 320 × 256 matrix detector in InSb (Indium Antimonide), was used to record the thermograms. As a result, the CO2 Laser excitation is better for the delamination detection in CFRP. This study opens interesting perspectives for inspecting other types of defects in materials sciences;the microwave excitation is suitable for the deep defects in the materials whereas the CO2 Laser excitation is better for the defects near the surface of the materials.展开更多
In the field of plant protection,certain methods for assessing the current pest situation and implementing appropriate protection countermeasures can effectively protect plants while saving manpower and material resou...In the field of plant protection,certain methods for assessing the current pest situation and implementing appropriate protection countermeasures can effectively protect plants while saving manpower and material resources.However,current pest monitoring methods are primarily based on the stage of"seeing,hand checking,disc shooting and net catching",and the level of automation is low.Manual methods are time-consuming,prone to error,and difficult to review.We designed a method based on infrared thermography principle for counting Ricania guttata(Walker),a pest which is harmful to mangrove plants.This method,which is based on thermal infrared images and binarized image segmentation,realizes image processing of surface temperature,effectively distinguishes pests and sticky board,automatically counts the number of pests,and expands the data source based on image processing.Furthermore,this method contributes to the solution of the problem that counting error of insect close to the color of sticky board is greater in image recognition of visible light,when the pest color is close to the stick board.It can facilitate manual investigation of mangrove pests,simply and efficiently count the number of pests on the stick board,and provide data and technical support for pest condition analysis and control.展开更多
A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared ...A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.展开更多
Resonant magnetic perturbations(RMPs)with high toroidal mode number n are considered for controlling edge-localized modes(ELMs)and divertor heat flux in future ITER H-mode operations.In this paper,characteristics of d...Resonant magnetic perturbations(RMPs)with high toroidal mode number n are considered for controlling edge-localized modes(ELMs)and divertor heat flux in future ITER H-mode operations.In this paper,characteristics of divertor heat flux under high-nRMPs(n=3 and 4)in H-mode plasma are investigated using newly upgraded infrared thermography diagnostic in EAST.Additional splitting strike point(SSP)accompanying with ELM suppression is observed under both RMPs with n=3 and n=4,the SSP in heat flux profile agrees qualitatively with the modeled magnetic footprint.Although RMPs suppress ELMs,they increase the stationary heat flux during ELM suppression.The dependence of heat flux on q_(95)during ELM suppression is preliminarily investigated,and further splitting in the original strike point is observed at q 495=during ELM suppression.In terms of ELM pulses,the presence of RMPs shows little influence on transient heat flux distribution.展开更多
In this work, a 532 nm diode CW laser is used to heat samples used as building materials at a 1 meter standoff distance while using an FLIR (Forward-Looking Infrared) thermal camera to monitor and record the heating a...In this work, a 532 nm diode CW laser is used to heat samples used as building materials at a 1 meter standoff distance while using an FLIR (Forward-Looking Infrared) thermal camera to monitor and record the heating and then cooling of each sample after lasers are switched off. The data is then analyzed using FLIR proprietary software. Since the absorption spectra of materials are unique, using multiple lasers of different wavelengths to simultaneously shine onto the sample at different locations would give enough thermal data to successfully characterize the samples within a reasonable amount of time. The results are very promising for applications involving non-destructive detection and classification of materials.展开更多
Background:Increasing threat to Central Europe’s forests from the growing population of the European spruce bark beetle Ips typographus (L.) calls for developing highly effective methods of detection of the infestati...Background:Increasing threat to Central Europe’s forests from the growing population of the European spruce bark beetle Ips typographus (L.) calls for developing highly effective methods of detection of the infestation spots. The main goal of this study was to establish an automatic workflow for detection of dead trees and trees in poor condition of Picea abies using Middle Wave Infrared spectral range obtained from the aircraft.Methods:The studies were conducted in Wigry National Park (Poland) in 2020. A fusion of aircraft thermal data and laser scanning was used. Synchronous with thermal data acquisition ground reference data were obtained for P. abies in different health conditions. Determination of the range of canopy temperatures characteristic of the three condition states (‘healthy’,‘poor condition’,‘dead’) was performed using K-mean clustering. The accuracy of the method was evaluated on two validation sets:(1) individual tree canopies determined by photointerpretation, and (2) automatic segmentation of laser scanning data.Results:The results showed that the average temperature of ‘healthy’trees was 27.70℃, trees in ‘poor condition’28.57℃, and ‘dead’trees 30.17℃. High temperature differences between ‘healthy’and ‘dead’P. abies made it possible to distinguish these two condition classes with high accuracy. Lower accuracies were obtained for the class of ‘poor condition’, which was found to be confusing with both ‘healthy’and ‘dead’trees. According to results from the first validation set, a high overall accuracy of 0.60 was obtained. For the second validation set, the overall accuracy was reduced by 11%.Conclusions:This study indicates that canopy temperature recorded from the airborne level is a variable that differentiates ‘healthy’spruces from those in ‘poor condition’and the ‘dead’trees. The results confirmed that thermal and airborne laser scanning data fusion allows for creating a quick and simple workflow, which can successfully separate individual tree canopies and identify P. abies attacked by I. typographus. Further research is needed to identify trees in the early stages of invasion.展开更多
基金Special Fund for Basic Scientific Research of Central Universities(2020-JYB-ZDGG-117)。
文摘The prevalence of metabolic diseases,some diseases that are seriously harmful for human health and affect the quality of life,is increasing year by year.Early detection and intervention is the common strategy to deal with them.Infrared thermography(IRT)is a special medical imaging technology which can capture the changes of skin temperature associated with metabolic disorders.It might be a new method for early detection of metabolic diseases.The purpose of this review is to summarize advances of the use of IRT in evaluating single metabolic disorder such as obesity,hyperglycemia and hypertension,complex metabolic disorders such as metabolic syndrome and target organ damage such as coronary artery atherosclerosis and diabetic foot.The characteristic of thermograms of metabolic disease patients,the changes of thermal maps during the development of the disease,and the lacks in current studies are also discussed in the article.
基金Project (51074181) supported by the National Natural Science Foundation of ChinaProject (2010ssxt241) supported by Precious Dissertation Innovation Foundation of Central South University, China
文摘The method of infrared thermography to predict the temperature of the sulfide ores has a large error. To solve this problem, the temperature of the sulfide ores is measured by thermal infrared imager and recording thermometric instrument contrastively. The main factors, including emissivity, distance, angle and dust concentration that affect the temperature measurement precision, are analyzed. The regression equations about the individual factors and comprehensive factors are obtained by analyzing test data. The application of the regression equations improves the precision of the thermal infrared imager. The geometric information lost in traditional infrared thermometry is determined by visualization grid method and interpolation method, the relationship between the infrared imager and geometry information is established. The geometry location can be measured exactly.
基金Project(51305292)supported by the National Natural Science Foundation of ChinaProject(20105429001)supported by the National Aeronautical Science Foundation of China
文摘Fatigue behavior of AZ31B magnesium alloy electron beam welded joint undergoing cyclic loading was investigated by infrared thermography. Temperature evolution throughout a fatigue process was presented and the mechanism of heat generationwas discussed. Fatigue limit of the welded joint was predicted and the fatigue damage was also assessed based ontheevolution of the temperatureand hotspot zone on the specimen surfaceduring fatigue tests. The presented results show that infrared thermography can not onlyquicklypredict the fatigue behavior of the welded joint, but also qualitatively identify the evolution of fatigue damage in real time. It is found that the predicted fatigue limit agrees well with the conventionalS-Nexperimental results. The evolution of the temperatureand hotspot zone on the specimen surface can be an effectivefatigue damage indicatorfor effectiveevaluationof magnesium alloy electron beam welded joint.
基金Funded by the National Natural Science Foundation of China(Nos.51175364,51505322)Natural Science Foundation of Shanxi Province of China(No.2013011014-3)
文摘The fatigue behavior during high cycle fatigue testing and the tensile behavior of 5A06 aluminum alloy considering the anisotropy were studied.Two types of specimens including longitudinal specimen(parallel to the rolling direction) and transverse specimen(perpendicular to the rolling direction) were prepared.Infrared thermography was employed to monitor the temperature evolution during the fatigue and tensile tests.The temperature evolution curves in the two directions were contrastively analyzed.It is found that the temperature evolution during fatigue process possesses four stages:initial temperature rise stage,slow temperature decline stage,rapid temperature rise stage,and finial temperature decline stage.The heat generating mechanisms of the four stages are discussed.Obvious differences can be found between the longitudinal specimen and transverse specimen in fatigue strength and fatigue life.The fatigue strength and fatigue life of longitudinal specimen are higher than those of transverse specimen.During the tensile and fatigue testing process,the fracture temperature in the transverse direction are higher than that in the longitudinal direction.The fatigue strength prediction by means of infrared thermography has a good consistency with that by the traditional method.
文摘Manual inspections of infrastructures such as highway bridge, pavement, dam, and multistoried garage ceiling are time consuming, sometimes can be life threatening, and costly. An automated computerized system can reduce time, faulty inspection, and cost of inspection. In this study, we developed a computer model using deep learning Convolution Neural Network (CNN), which can be used to automatically detect the crack and non-crack type structure. The goal of this research is to allow application of state-of-the-art deep neural network and Unmanned Aerial Vehicle (UAV) technologies for highway bridge girder inspection. As a pilot study of implementing deep learning in Bridge Girder, we study the recognition, length, and location of crack in the structure of the UTC campus old garage concrete ceiling slab. A total of 2086 images of crack and non-crack were taken from UTC Old Library parking garage ceiling using handheld mobile phone and drone. After training the model shows 98% accuracy with crack and non-crack types of structures.
文摘In this paper, the use of a signal to noise ratio (SNR) is proposed for the quantification of the goodness of some selected processing techniques of thermographic images, such as differentiated absolute contrast, skewness and kurtosis based algorithms, pulsed phase transform, principal component analysis and thermographic signal reconstruction. A new hybrid technique is also applied (PhAC—Phase absolute contrast), it combines three different processing techniques: phase absolute contrast, pulsed phase thermography and thermographic signal reconstruction. The quality of the results is established on the basis of the values of the parameter SNR, assessed for the present defects in the analyzed specimen, which enabled to quantify and compare their identification and the quality of the results of the employed technique.
基金Project(2019M650262)supported by the China Postdoctoral Science FoundationProject(92060106)supported by the Major Research Plan of National Natural Science Foundation of ChinaProject(201803U8003)supported by the China Aeronautical Science Foundation。
文摘The heat generation behaviors of fatigue crack are deeply investigated under different preload forces combing numerical simulation and experiment.Firstly,a multi-contact simulation model is applied to stimulate the crack surfaces contact and the horn-sample contact under ultrasonic excitation for calculating the temperature fields.Then,the ultrasonic infrared thermography testing and the microscope testing are carried out for the heat generation and the plastic deformation behaviors of crack region under different preload forces.On this basis,an indirect observation method based on dots distribution is proposed to estimate the plastic deformation on crack contact surfaces.The obtained results show that the temperature rise of crack region increases with the increase of preload force when the preload force is less than 250 N,while the temperature rise rapidly declines due to the plastic deformation on crack contact surfaces and the inhibition effect when the preload force is 280 N.Moreover,the plastic deformation does not lead to the crack propagation,but reduces the detection repeatability of fatigue crack.This work provides an effective method for optimizing testing conditions in practical testing processes,which will be helpful to the establishment of testing standards for batches of test objects in ultrasonic infrared thermography testing.
文摘This paper presents two infrared thermography methods with CO2 Laser excitation and microwave excitation applied to defect detection in CFRP. The tests were conducted with two specimens, one with defect, and another one without defect. On two concrete plates 40 cm× 40 cm× 4.5 cmwere reinforced by CFRP;the defects were made by the absence of adhesive on an area10 cm× 10 cm. The specimens were heated by microwave, generated by a commercial magnetron of 2.45 GHz and guided by a pyramidal horn antenna, with a power of 360 W within 150 s. Another series of the tests was conducted with CO2 Laser, wavelength 10.6 μm, by heating the samples with a power of 300 W within 40 s. An infrared camera sensitive to medium waves in range of 3 - 5 μm, with a detector of 320 × 256 matrix detector in InSb (Indium Antimonide), was used to record the thermograms. As a result, the CO2 Laser excitation is better for the delamination detection in CFRP. This study opens interesting perspectives for inspecting other types of defects in materials sciences;the microwave excitation is suitable for the deep defects in the materials whereas the CO2 Laser excitation is better for the defects near the surface of the materials.
文摘In the field of plant protection,certain methods for assessing the current pest situation and implementing appropriate protection countermeasures can effectively protect plants while saving manpower and material resources.However,current pest monitoring methods are primarily based on the stage of"seeing,hand checking,disc shooting and net catching",and the level of automation is low.Manual methods are time-consuming,prone to error,and difficult to review.We designed a method based on infrared thermography principle for counting Ricania guttata(Walker),a pest which is harmful to mangrove plants.This method,which is based on thermal infrared images and binarized image segmentation,realizes image processing of surface temperature,effectively distinguishes pests and sticky board,automatically counts the number of pests,and expands the data source based on image processing.Furthermore,this method contributes to the solution of the problem that counting error of insect close to the color of sticky board is greater in image recognition of visible light,when the pest color is close to the stick board.It can facilitate manual investigation of mangrove pests,simply and efficiently count the number of pests on the stick board,and provide data and technical support for pest condition analysis and control.
基金Project(50977064) supported by the National Natural Science Foundation of China
文摘A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.
基金supported by the National Key Research and Development Program of China (No. 2017YFA0402500)the National MCF Energy R&D Program of China (No. 2019YFE03040000)+5 种基金National Natural Science Foundation of China (Nos. 12005262 and 11975274)the Foundation of President of Hefei Institutes of Physical Science, CAS (No. YZJJ2018QN8)the Anhui Provincial Natural Science Foundation (No. 2108085J06)the Users with Excellence Program of Hefei Science Center CAS (Nos. 2021HSC-UE018 and 2020HSC-UE011)External Cooperation Program of Chinese Academy of Sciences (No. 116134KYSB20180035)Science Foundation of Institute of Plasma Physics, Chinese Academy of Sciences (No. DSJJ-2021-04)
文摘Resonant magnetic perturbations(RMPs)with high toroidal mode number n are considered for controlling edge-localized modes(ELMs)and divertor heat flux in future ITER H-mode operations.In this paper,characteristics of divertor heat flux under high-nRMPs(n=3 and 4)in H-mode plasma are investigated using newly upgraded infrared thermography diagnostic in EAST.Additional splitting strike point(SSP)accompanying with ELM suppression is observed under both RMPs with n=3 and n=4,the SSP in heat flux profile agrees qualitatively with the modeled magnetic footprint.Although RMPs suppress ELMs,they increase the stationary heat flux during ELM suppression.The dependence of heat flux on q_(95)during ELM suppression is preliminarily investigated,and further splitting in the original strike point is observed at q 495=during ELM suppression.In terms of ELM pulses,the presence of RMPs shows little influence on transient heat flux distribution.
文摘In this work, a 532 nm diode CW laser is used to heat samples used as building materials at a 1 meter standoff distance while using an FLIR (Forward-Looking Infrared) thermal camera to monitor and record the heating and then cooling of each sample after lasers are switched off. The data is then analyzed using FLIR proprietary software. Since the absorption spectra of materials are unique, using multiple lasers of different wavelengths to simultaneously shine onto the sample at different locations would give enough thermal data to successfully characterize the samples within a reasonable amount of time. The results are very promising for applications involving non-destructive detection and classification of materials.
基金co-financed by the European Union from the European Social Fund under the "InterDOC-STARt" project (POWR.03.02.00-00-I033/16-00) and from the Operational Programme Infrastructure and Environment under the program 2.4.4d-assessment of the state of natural resources in national parks using modern remote sensing technologies"Acquisition of multi-source remote sensing data and their analysis for the area of Wigry National Park with a part of Wigry lake and the Czarna Hańcza river" project。
文摘Background:Increasing threat to Central Europe’s forests from the growing population of the European spruce bark beetle Ips typographus (L.) calls for developing highly effective methods of detection of the infestation spots. The main goal of this study was to establish an automatic workflow for detection of dead trees and trees in poor condition of Picea abies using Middle Wave Infrared spectral range obtained from the aircraft.Methods:The studies were conducted in Wigry National Park (Poland) in 2020. A fusion of aircraft thermal data and laser scanning was used. Synchronous with thermal data acquisition ground reference data were obtained for P. abies in different health conditions. Determination of the range of canopy temperatures characteristic of the three condition states (‘healthy’,‘poor condition’,‘dead’) was performed using K-mean clustering. The accuracy of the method was evaluated on two validation sets:(1) individual tree canopies determined by photointerpretation, and (2) automatic segmentation of laser scanning data.Results:The results showed that the average temperature of ‘healthy’trees was 27.70℃, trees in ‘poor condition’28.57℃, and ‘dead’trees 30.17℃. High temperature differences between ‘healthy’and ‘dead’P. abies made it possible to distinguish these two condition classes with high accuracy. Lower accuracies were obtained for the class of ‘poor condition’, which was found to be confusing with both ‘healthy’and ‘dead’trees. According to results from the first validation set, a high overall accuracy of 0.60 was obtained. For the second validation set, the overall accuracy was reduced by 11%.Conclusions:This study indicates that canopy temperature recorded from the airborne level is a variable that differentiates ‘healthy’spruces from those in ‘poor condition’and the ‘dead’trees. The results confirmed that thermal and airborne laser scanning data fusion allows for creating a quick and simple workflow, which can successfully separate individual tree canopies and identify P. abies attacked by I. typographus. Further research is needed to identify trees in the early stages of invasion.