A phase-sensitive optical time domain reflectometer (φ-OTDR) based on a 120°-phase-difference Michelson in- terferometer is proposed. The Michelson interferometer with arm difference of 4m is used to test the ...A phase-sensitive optical time domain reflectometer (φ-OTDR) based on a 120°-phase-difference Michelson in- terferometer is proposed. The Michelson interferometer with arm difference of 4m is used to test the phase difference between the Rayleigh scattering from two sections of the fiber. A new demodulation method called the inverse transmission matrix demodulation scheme is utilized to demodulate the distributed phase from the backward scattering along the long fiber, The experimental results show that the 120°-phase-difference inter- ferometer φ-OTDR can detect the phase along the 3km fiber, and the acoustic signal within the whole human hearing range of 20 Hz-20 kHz is reproduced accurately and quickly.展开更多
Phase-sensitive optical time domain reflectometry(Ф-OTDR)is an effective way to detect vibrations and acoustic waves with high sensitivity,by interrogating coherent Rayleigh backscattering light in sensing fiber.In p...Phase-sensitive optical time domain reflectometry(Ф-OTDR)is an effective way to detect vibrations and acoustic waves with high sensitivity,by interrogating coherent Rayleigh backscattering light in sensing fiber.In particular,fiber-optic distributed acoustic sensing(DAS)based on theФ-OTDR with phase demodulation has been extensively studied and widely used in intrusion detection,borehole seismic acquisition,structure health monitoring,etc.,in recent years,with superior advantages such as long sensing range,fast response speed,wide sensing bandwidth,low operation cost and long service lifetime.Significant advances in research and development(R&D)ofФ-OTDR have been made since 2014.In this review,we present a historical review ofФ-OTDR and then summarize the recent progress ofФ-OTDR in the Fiber Optics Research Center(FORC)at University of Electronic Science and Technology of China(UESTC),which is the first group to carry out R&D ofФ-OTDR and invent ultra-sensitive DAS(uDAS)seismometer in China which is elected as one of the ten most significant technology advances of PetroChina in 2019.It can be seen that theФ-OTDR/DAS technology is currently under its rapid development stage and would reach its climax in the next 5 years.展开更多
A quasi-distributed Fabry-Perot fiber optic temperature sensor array using optical time domain reflectometry (OTDR) technique is presented. The F-P sensor is made by two face to face single-mode optical fibers and t...A quasi-distributed Fabry-Perot fiber optic temperature sensor array using optical time domain reflectometry (OTDR) technique is presented. The F-P sensor is made by two face to face single-mode optical fibers and their surfaces have been polished. Due to the low reflectivity of the fiber surfaces, the sensor is described as low Fresnel Fabry-Perot interferometer (FPI). The working principle is analyzed using twobeam optical interference approximation. To measure the temperature, a certain temperature sensitive material is filled in the cavity. The slight changes of the reflective intensity which is induced by the refractive index of the material was caught by OTDR. The length of the cavity is obtained by monitoring the interference spectrum which is used for the setting of the sensor static characteristics within the quasi-linear range. Based on our design, a three point sensor array are fabricated and characterized. The experimental results show that with the temperature increasing from -30℃ to 80℃, the reflectivity increase in a good linear manner. The sensitivity was approximate 0.074 dB℃. For the low transmission loss, more sensors can be integrated.展开更多
In this paper,a novel birefringence measurement method through the Rayleigh backscattered lightwave within single-mode fiber is proposed,using a single chirped-pulse with arbitrary state of polarization.Numerical anal...In this paper,a novel birefringence measurement method through the Rayleigh backscattered lightwave within single-mode fiber is proposed,using a single chirped-pulse with arbitrary state of polarization.Numerical analysis is carried out in detail,then pulse-compression phase-sensitive optical time domain reflectometry(PC-O-OTDR)with polarization-diverse coherent detection is employed to verify this method.A 2 km spun single-mode fiber is tested with 8.6cm spatial resolution,and the average birefringence of the fiber under test is measured as 0.234rad/m,which is consistent with previous literatures about single-mode fiber.Moreover,the relationship between the measured birefringence and the spatial resolution is also studied for the first time,and the results show that spatial resolution is crucial for fiber birefringence measurement.展开更多
Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the B...Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.展开更多
In a phase-sensitive optical-time domain reflectometry (Ф-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by sto...In a phase-sensitive optical-time domain reflectometry (Ф-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Ф-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Ф-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos U0934001 and 11076028the Science and Technology Commission of Shanghai Municipality under Grant Nos 11DZ1140202 and 13XD1425400the Pudong New Area Science and Technology Development Fund of China under Grant No PKJ2012-D04
文摘A phase-sensitive optical time domain reflectometer (φ-OTDR) based on a 120°-phase-difference Michelson in- terferometer is proposed. The Michelson interferometer with arm difference of 4m is used to test the phase difference between the Rayleigh scattering from two sections of the fiber. A new demodulation method called the inverse transmission matrix demodulation scheme is utilized to demodulate the distributed phase from the backward scattering along the long fiber, The experimental results show that the 120°-phase-difference inter- ferometer φ-OTDR can detect the phase along the 3km fiber, and the acoustic signal within the whole human hearing range of 20 Hz-20 kHz is reproduced accurately and quickly.
基金The authors would like to thank all of the members in the FORC at UESTC for their hard work and important contributions to this workThis work was funded by the Natural Science Foundation of China(Grant Nos.41527805 and 61635005)the 111 Poject(Grant No.B14039).
文摘Phase-sensitive optical time domain reflectometry(Ф-OTDR)is an effective way to detect vibrations and acoustic waves with high sensitivity,by interrogating coherent Rayleigh backscattering light in sensing fiber.In particular,fiber-optic distributed acoustic sensing(DAS)based on theФ-OTDR with phase demodulation has been extensively studied and widely used in intrusion detection,borehole seismic acquisition,structure health monitoring,etc.,in recent years,with superior advantages such as long sensing range,fast response speed,wide sensing bandwidth,low operation cost and long service lifetime.Significant advances in research and development(R&D)ofФ-OTDR have been made since 2014.In this review,we present a historical review ofФ-OTDR and then summarize the recent progress ofФ-OTDR in the Fiber Optics Research Center(FORC)at University of Electronic Science and Technology of China(UESTC),which is the first group to carry out R&D ofФ-OTDR and invent ultra-sensitive DAS(uDAS)seismometer in China which is elected as one of the ten most significant technology advances of PetroChina in 2019.It can be seen that theФ-OTDR/DAS technology is currently under its rapid development stage and would reach its climax in the next 5 years.
基金funded by the National Natural Science Foundation of China under Grant No. 60677031 and 60577043the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20060280001+1 种基金Shanghai Education Commission under Grant No. 06AZ032, Chenguang Program under Grant No. 2007CG54Science and Technology Commission of Shanghai Municipality (STCSM) under Grant No. 07DZ22024 and 075307017
文摘A quasi-distributed Fabry-Perot fiber optic temperature sensor array using optical time domain reflectometry (OTDR) technique is presented. The F-P sensor is made by two face to face single-mode optical fibers and their surfaces have been polished. Due to the low reflectivity of the fiber surfaces, the sensor is described as low Fresnel Fabry-Perot interferometer (FPI). The working principle is analyzed using twobeam optical interference approximation. To measure the temperature, a certain temperature sensitive material is filled in the cavity. The slight changes of the reflective intensity which is induced by the refractive index of the material was caught by OTDR. The length of the cavity is obtained by monitoring the interference spectrum which is used for the setting of the sensor static characteristics within the quasi-linear range. Based on our design, a three point sensor array are fabricated and characterized. The experimental results show that with the temperature increasing from -30℃ to 80℃, the reflectivity increase in a good linear manner. The sensitivity was approximate 0.074 dB℃. For the low transmission loss, more sensors can be integrated.
文摘In this paper,a novel birefringence measurement method through the Rayleigh backscattered lightwave within single-mode fiber is proposed,using a single chirped-pulse with arbitrary state of polarization.Numerical analysis is carried out in detail,then pulse-compression phase-sensitive optical time domain reflectometry(PC-O-OTDR)with polarization-diverse coherent detection is employed to verify this method.A 2 km spun single-mode fiber is tested with 8.6cm spatial resolution,and the average birefringence of the fiber under test is measured as 0.234rad/m,which is consistent with previous literatures about single-mode fiber.Moreover,the relationship between the measured birefringence and the spatial resolution is also studied for the first time,and the results show that spatial resolution is crucial for fiber birefringence measurement.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 11474133 and 61235005) and Science and Technology Program of Guangzhou (No. 201707010338).
文摘Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.
文摘In a phase-sensitive optical-time domain reflectometry (Ф-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Ф-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Ф-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.