PhoR is a histidine kinase in a two-component regulatory system that regulates phosphorus metabolic pathways and undertakes the key mission of information transmission in pathogenic bacteria.The full-length phoR gene ...PhoR is a histidine kinase in a two-component regulatory system that regulates phosphorus metabolic pathways and undertakes the key mission of information transmission in pathogenic bacteria.The full-length phoR gene was successfully cloned from the Vibrio alginolyticus HY9901 strain.A comprehensive analysis of the cloned gene was conducted using bioinformatics.Sequence analysis revealed that the total length of the phoR gene(GenBank accession No.:KJ958404.1)is 1299 bp,with the coding region containing a total of 432 amino acid residues.The phylogenetic tree of PhoR revealed that it belongs to the same subclade as V.diabolicus.The SMART program was employed for the purpose of functional domain prediction,which revealed that PhoR possesses three major functional domains:PAS(amino acids 98-166),HisKA(amino acids 205-272),and HATPase_c(amino acids 317-429).展开更多
Bacillus subtilis strain NCD-2 is an excellent biocontrol agent for plant soil-borne diseases, and the lipopeptide fengycin is one of the active antifungal compounds in strain NCD-2. The regulator PhoP and its sensor ...Bacillus subtilis strain NCD-2 is an excellent biocontrol agent for plant soil-borne diseases, and the lipopeptide fengycin is one of the active antifungal compounds in strain NCD-2. The regulator PhoP and its sensor kinase PhoR compose a two-component system in B. subtilis. In this study, the phoR- and phoP-knockout mutants were constructed by in-frame deletion and the role of PhoR/PhoP on the production of fengycin was determined. Inactivation of phoR or phoP in B. subtilis decreased its inhibition ability against Botrytis cinerea growth in vitro compared to the strain NCD-2 wild type. The lipopeptides were extracted from strain NCD-2 wild type and its mutant strains by hydrochloric acid precipitate, and the lipopeptides from phoR-null mutant orphoP-null mutant almost lost the inhibition ability against B. cinerea growth compared to the lipopeptides from strain NCD-2 wild type. Fast protein liquid chromatography (FPLC) analysis of the lipopeptides showed that inactivation of phoR or phoP genes reduced the production of fengycin by strain NCD-2. The fengycin production abilities were compared for bacteria under low-phosphate medium (LPM) and high-phosphate medium (HPM), respectively. Results indicated that the regulation of fengycin production by the PhoR/PhoP two-component system occurred in LPM but not in HPM. Reverse transcriptionaI-PCR confirmed that the fengycin synthetase gene fenC was positively regulated by phoP when cultured in LPM. All of these characteristics could be partially restored by complementation of intact phoR or phoP gene in the mutant. These data indicated that the PhoR/PhoP two-component system greatly regulated fengycin production and antifungal ability in B. subtilis NCD-2 mainly under low-phosphate conditions.展开更多
The emergence of multidrug-resistant strains (MDR-TB) and extensively drug-resistant strains (XDR-TB) has fuelled the quest for novel drugs and drug targets for its successful treatment. One of the potential candi...The emergence of multidrug-resistant strains (MDR-TB) and extensively drug-resistant strains (XDR-TB) has fuelled the quest for novel drugs and drug targets for its successful treatment. One of the potential candidates as novel TB drug target is the PhoR sensor domain, an extracellular domain of PhoR histidine kinase. PhoR sensor domain is part of the two-component system PhoR-PhoP that senses environmental stimuli and relays the signal to control the expression of 78 virulent associated genes in Mycobacterium tuberculosis. 3D structure of the PhoR sensor domain will facilitate the structure based drug discovery of novel anti- tubercular. In this study, we successfully predicted and isolated the gene encoding PhoR sensor domain from Mycobacterium tuberculosis H37Rv, cloned it in pGEM-T vector and subcloned it in pRSET emGFP expression vector. PhoR sensor domain was successfully cloned and would be used for further expression, purification and crystallization studies.展开更多
基金Supported by Outstanding Graduate Entering Laboratory Project of College of Fisheries,Guangdong Ocean UniversityNational Natural Science Foundation of China(32073015)+1 种基金Undergraduate Innovation Team of Guangdong Ocean University(CCTD201802)Undergraduate Innovation and Entrepreneurship Training Program of Guangdong Ocean University(CXXL2024007).
文摘PhoR is a histidine kinase in a two-component regulatory system that regulates phosphorus metabolic pathways and undertakes the key mission of information transmission in pathogenic bacteria.The full-length phoR gene was successfully cloned from the Vibrio alginolyticus HY9901 strain.A comprehensive analysis of the cloned gene was conducted using bioinformatics.Sequence analysis revealed that the total length of the phoR gene(GenBank accession No.:KJ958404.1)is 1299 bp,with the coding region containing a total of 432 amino acid residues.The phylogenetic tree of PhoR revealed that it belongs to the same subclade as V.diabolicus.The SMART program was employed for the purpose of functional domain prediction,which revealed that PhoR possesses three major functional domains:PAS(amino acids 98-166),HisKA(amino acids 205-272),and HATPase_c(amino acids 317-429).
基金funded by the earmarked fund for the China Agriculture Research System (CARS-18-15)the National Natural Science Foundation of China (31272085,31572051)the Special Fund for Agro-scientific Research in the Public Interest,China (201503109)
文摘Bacillus subtilis strain NCD-2 is an excellent biocontrol agent for plant soil-borne diseases, and the lipopeptide fengycin is one of the active antifungal compounds in strain NCD-2. The regulator PhoP and its sensor kinase PhoR compose a two-component system in B. subtilis. In this study, the phoR- and phoP-knockout mutants were constructed by in-frame deletion and the role of PhoR/PhoP on the production of fengycin was determined. Inactivation of phoR or phoP in B. subtilis decreased its inhibition ability against Botrytis cinerea growth in vitro compared to the strain NCD-2 wild type. The lipopeptides were extracted from strain NCD-2 wild type and its mutant strains by hydrochloric acid precipitate, and the lipopeptides from phoR-null mutant orphoP-null mutant almost lost the inhibition ability against B. cinerea growth compared to the lipopeptides from strain NCD-2 wild type. Fast protein liquid chromatography (FPLC) analysis of the lipopeptides showed that inactivation of phoR or phoP genes reduced the production of fengycin by strain NCD-2. The fengycin production abilities were compared for bacteria under low-phosphate medium (LPM) and high-phosphate medium (HPM), respectively. Results indicated that the regulation of fengycin production by the PhoR/PhoP two-component system occurred in LPM but not in HPM. Reverse transcriptionaI-PCR confirmed that the fengycin synthetase gene fenC was positively regulated by phoP when cultured in LPM. All of these characteristics could be partially restored by complementation of intact phoR or phoP gene in the mutant. These data indicated that the PhoR/PhoP two-component system greatly regulated fengycin production and antifungal ability in B. subtilis NCD-2 mainly under low-phosphate conditions.
文摘The emergence of multidrug-resistant strains (MDR-TB) and extensively drug-resistant strains (XDR-TB) has fuelled the quest for novel drugs and drug targets for its successful treatment. One of the potential candidates as novel TB drug target is the PhoR sensor domain, an extracellular domain of PhoR histidine kinase. PhoR sensor domain is part of the two-component system PhoR-PhoP that senses environmental stimuli and relays the signal to control the expression of 78 virulent associated genes in Mycobacterium tuberculosis. 3D structure of the PhoR sensor domain will facilitate the structure based drug discovery of novel anti- tubercular. In this study, we successfully predicted and isolated the gene encoding PhoR sensor domain from Mycobacterium tuberculosis H37Rv, cloned it in pGEM-T vector and subcloned it in pRSET emGFP expression vector. PhoR sensor domain was successfully cloned and would be used for further expression, purification and crystallization studies.