BACKGROUND Phosphoglycerate kinase 1(PGK1)has been identified as a possible biomarker for breast cancer(BC)and may play a role in the development and advancement of triple-negative BC(TNBC).AIM To explore the PGK1 and...BACKGROUND Phosphoglycerate kinase 1(PGK1)has been identified as a possible biomarker for breast cancer(BC)and may play a role in the development and advancement of triple-negative BC(TNBC).AIM To explore the PGK1 and BC research status and PGK1 expression and mecha-nism differences among TNBC,non-TNBC,and normal breast tissue.METHODS PGK1 and BC related literature was downloaded from Web of Science Core Co-llection Core Collection.Publication counts,key-word frequency,cooperation networks,and theme trends were analyzed.Normal breast,TNBC,and non-TNBC mRNA data were gathered,and differentially expressed genes obtained.Area under the summary receiver operating characteristic curves,sensitivity and specificity of PGK1 expression were determined.Kaplan Meier revealed PGK1’s prognostic implication.PGK1 co-expressed genes were explored,and Gene Onto-logy,Kyoto Encyclopedia of Genes and Genomes,and Disease Ontology applied.Protein-protein interaction networks were constructed.Hub genes identified.RESULTS PGK1 and BC related publications have surged since 2020,with China leading the way.The most frequent keyword was“Expression”.Collaborative networks were found among co-citations,countries,institutions,and authors.PGK1 expression and BC progression were research hotspots,and PGK1 expression and BC survival were research frontiers.In 16 TNBC vs non-cancerous breast and 15 TNBC vs non-TNBC datasets,PGK1 mRNA levels were higher in 1159 TNBC than 1205 non-cancerous breast cases[standardized mean differences(SMD):0.85,95%confidence interval(95%CI):0.54-1.16,I²=86%,P<0.001].PGK1 expression was higher in 1520 TNBC than 7072 non-TNBC cases(SMD:0.25,95%CI:0.03-0.47,I²=91%,P=0.02).Recurrence free survival was lower in PGK1-high-expression than PGK1-low-expression group(hazard ratio:1.282,P=0.023).PGK1 co-expressed genes were concentrated in ATP metabolic process,HIF-1 signaling,and glycolysis/gluconeogenesis pathways.CONCLUSION PGK1 expression is a research hotspot and frontier direction in the BC field.PGK1 may play a strong role in promoting cancer in TNBC by mediating metabolism and HIF-1 signaling pathways.展开更多
Objective:Glycogen synthase kinase-3β(GSK3β)has been recognized as a suppressor of Wnt/β-catenin signaling,which is critical for the stemness maintenance of breast cancer stem cells.However,the regulatory mechanism...Objective:Glycogen synthase kinase-3β(GSK3β)has been recognized as a suppressor of Wnt/β-catenin signaling,which is critical for the stemness maintenance of breast cancer stem cells.However,the regulatory mechanisms of GSK3βprotein expression remain elusive.Methods:Co-immunoprecipitation and mass spectral assays were performed to identify molecules binding to GSK3β,and to characterize the interactions of GSK3β,heat shock protein 90(Hsp90),and co-chaperones.The role of PGK1 in Hsp90 chaperoning GSK3βwas evaluated by constructing 293T cells stably expressing different domains/mutants of Hsp90α,and by performing a series of binding assays with bacterially purified proteins and clinical specimens.The influences of Hsp90 inhibitors on breast cancer stem cell stemness were investigated by Western blot and mammosphere formation assays.Results:We showed that GSK3βwas a client protein of Hsp90.Hsp90,which did not directly bind to GSK3β,interacted with phosphoglycerate kinase 1 via its C-terminal domain,thereby facilitating the binding of GSK3βto Hsp90.GSK3β-bound PGK1 interacted with Hsp90 in the“closed”conformation and stabilized GSK3βexpression in an Hsp90 activity-dependent manner.The Hsp90 inhibitor,17-AAG,rather than HDN-1,disrupted the interaction between Hsp90 and PGK1,and reduced GSK3βexpression,resulting in significantly reduced inhibition ofβ-catenin expression,to maintain the stemness of breast cancer stem cells.Conclusions:Our findings identified a novel regulatory mechanism of GSK3βexpression involving metabolic enzyme PGK1-coupled Hsp90,and highlighted the potential for more effective cancer treatment by selecting Hsp90 inhibitors that do not affect PGK1-regulated GSK3βexpression.展开更多
基金Supported by the Guangxi Zhuang Autonomous Region Health Commission Scientific Research Project,No.Z-A20220530.
文摘BACKGROUND Phosphoglycerate kinase 1(PGK1)has been identified as a possible biomarker for breast cancer(BC)and may play a role in the development and advancement of triple-negative BC(TNBC).AIM To explore the PGK1 and BC research status and PGK1 expression and mecha-nism differences among TNBC,non-TNBC,and normal breast tissue.METHODS PGK1 and BC related literature was downloaded from Web of Science Core Co-llection Core Collection.Publication counts,key-word frequency,cooperation networks,and theme trends were analyzed.Normal breast,TNBC,and non-TNBC mRNA data were gathered,and differentially expressed genes obtained.Area under the summary receiver operating characteristic curves,sensitivity and specificity of PGK1 expression were determined.Kaplan Meier revealed PGK1’s prognostic implication.PGK1 co-expressed genes were explored,and Gene Onto-logy,Kyoto Encyclopedia of Genes and Genomes,and Disease Ontology applied.Protein-protein interaction networks were constructed.Hub genes identified.RESULTS PGK1 and BC related publications have surged since 2020,with China leading the way.The most frequent keyword was“Expression”.Collaborative networks were found among co-citations,countries,institutions,and authors.PGK1 expression and BC progression were research hotspots,and PGK1 expression and BC survival were research frontiers.In 16 TNBC vs non-cancerous breast and 15 TNBC vs non-TNBC datasets,PGK1 mRNA levels were higher in 1159 TNBC than 1205 non-cancerous breast cases[standardized mean differences(SMD):0.85,95%confidence interval(95%CI):0.54-1.16,I²=86%,P<0.001].PGK1 expression was higher in 1520 TNBC than 7072 non-TNBC cases(SMD:0.25,95%CI:0.03-0.47,I²=91%,P=0.02).Recurrence free survival was lower in PGK1-high-expression than PGK1-low-expression group(hazard ratio:1.282,P=0.023).PGK1 co-expressed genes were concentrated in ATP metabolic process,HIF-1 signaling,and glycolysis/gluconeogenesis pathways.CONCLUSION PGK1 expression is a research hotspot and frontier direction in the BC field.PGK1 may play a strong role in promoting cancer in TNBC by mediating metabolism and HIF-1 signaling pathways.
基金This work was supported by grants from the NSFC Shandong Joint Fund(Grant No.U1606403)the National Natural Science Foundation of China(Grant No.81673450)+4 种基金the State Key Program of the National Natural Science Foundation of China(Grant No.82030074)the NSFC-Shandong Joint Fund(Grant No.U1906212)the Qingdao National Laboratory for Marine Science and Technology(Grant No.2015ASKJ02)the National Science and Technology Major Project for Significant New Drugs Development(Grant No.2018ZX09735-004)the Shandong Provincial Natural Science Foundation(major basic research projects,Grant No.ZR2019ZD18).
文摘Objective:Glycogen synthase kinase-3β(GSK3β)has been recognized as a suppressor of Wnt/β-catenin signaling,which is critical for the stemness maintenance of breast cancer stem cells.However,the regulatory mechanisms of GSK3βprotein expression remain elusive.Methods:Co-immunoprecipitation and mass spectral assays were performed to identify molecules binding to GSK3β,and to characterize the interactions of GSK3β,heat shock protein 90(Hsp90),and co-chaperones.The role of PGK1 in Hsp90 chaperoning GSK3βwas evaluated by constructing 293T cells stably expressing different domains/mutants of Hsp90α,and by performing a series of binding assays with bacterially purified proteins and clinical specimens.The influences of Hsp90 inhibitors on breast cancer stem cell stemness were investigated by Western blot and mammosphere formation assays.Results:We showed that GSK3βwas a client protein of Hsp90.Hsp90,which did not directly bind to GSK3β,interacted with phosphoglycerate kinase 1 via its C-terminal domain,thereby facilitating the binding of GSK3βto Hsp90.GSK3β-bound PGK1 interacted with Hsp90 in the“closed”conformation and stabilized GSK3βexpression in an Hsp90 activity-dependent manner.The Hsp90 inhibitor,17-AAG,rather than HDN-1,disrupted the interaction between Hsp90 and PGK1,and reduced GSK3βexpression,resulting in significantly reduced inhibition ofβ-catenin expression,to maintain the stemness of breast cancer stem cells.Conclusions:Our findings identified a novel regulatory mechanism of GSK3βexpression involving metabolic enzyme PGK1-coupled Hsp90,and highlighted the potential for more effective cancer treatment by selecting Hsp90 inhibitors that do not affect PGK1-regulated GSK3βexpression.