期刊文献+
共找到997篇文章
< 1 2 50 >
每页显示 20 50 100
Simultaneous removal of sulfur dioxide and nitrogen oxide from flue gas by phosphorus sludge:The performance and absorption mechanism
1
作者 Yuanyuan Yin Xujun Wang +3 位作者 Lei Xu Binbin He Yunxiang Nie Yi Mei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期212-221,共10页
Developing low-cost and green simultaneous desulfurization and denitrification technologies is of great significance for sulfur dioxide(SO_(2))and nitrogen oxide(NO_(x))emission control at low temperatures,especially ... Developing low-cost and green simultaneous desulfurization and denitrification technologies is of great significance for sulfur dioxide(SO_(2))and nitrogen oxide(NO_(x))emission control at low temperatures,especially for small and medium-sized coal-fired boilers and furnaces.Herein,phosphorus sludge,an industrial waste from the production process of yellow phosphorus,has been developed to simultaneously eliminate SO_(2)and NO_(x)from coal-fired flue gas.The key factors affecting the experimental results indicate that desulfurization and denitrification efficiency of over 95%can be achieved at a low temperature of 55℃.Further,the absorption mechanism was investigated by characterizing the solid and liquid phases of the phosphorus sludge during the absorption process.The efficient removal of SO_(2)is attributed to the abundance of iron(Fe^(3+))and manganese(Mn^(2+))in the absorbent.SO_(2)can be rapidly catalyzed and converted to SO_(4)^(2-)by them.The key to NOx removal is the oxidation of NO toward watersoluble high-valent nitrogen oxides by oxidizing reactive substances induced via yellow phosphorus,which are then absorbed by water and converted to NO_(3)^(-).Meanwhile,yellow phosphorus is oxidized to phosphoric acid(H_(3)PO_(4)).The spent absorption slurry can be reused through wet process phosphoric acid production,as it contains sulfuric acid(H_(2)SO_(4)),nitric acid(HNO_(3)),and H_(3)PO_(4).Accordingly,this is a technology with broad application prospects. 展开更多
关键词 ABSORPTION OXIDATION Multiphase reaction phosphorus sludge Yellow phosphorus Low temperature
下载PDF
Soybean(Glycine max)rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorusmineralizing-related bacteria in phosphate deficient acidic soils
2
作者 Qianqian Chen Qian Zhao +9 位作者 Baoxing Xie Xing Lu Qi Guo Guoxuan Liu Ming Zhou Jihui Tian Weiguo Lu Kang Chen Jiang Tian Cuiyue Liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1685-1702,共18页
Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the ba... Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus. 展开更多
关键词 organic phosphorus acid phosphatase SOYBEAN bacterial community phoC-harboring bacteria RHIZOSPHERE
下载PDF
Combining field data and modeling to better understand maize growth response to phosphorus(P) fertilizer application and soil P dynamics in calcareous soils
3
作者 Weina Zhang Zhigan Zhao +3 位作者 Di He Junhe Liu Haigang Li Enli Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期1006-1021,共16页
We used field experimental data to evaluate the ability of the agricultural production system model (APSIM) to simulate soil P availability,maize biomass and grain yield in response to P fertilizer applications on a f... We used field experimental data to evaluate the ability of the agricultural production system model (APSIM) to simulate soil P availability,maize biomass and grain yield in response to P fertilizer applications on a fluvo-aquic soil in the North China Plain.Crop and soil data from a 2-year experiment with three P fertilizer application rates(0,75 and 300 kg P_(2)O_(5) ha^(–1)) were used to calibrate the model.Sensitivity analysis was carried out to investigate the influence of APSIM SoilP parameters on the simulated P availability in soil and maize growth.Crop and soil P parameters were then derived by matching or relating the simulation results to observed crop biomass,yield,P uptake and Olsen-P in soil.The re-parameterized model was further validated against 2 years of independent data at the same sites.The re-parameterized model enabled good simulation of the maize leaf area index (LAI),biomass,grain yield,P uptake,and grain P content in response to different levels of P additions against both the calibration and validation datasets.Our results showed that APSIM needs to be re-parameterized for simulation of maize LAI dynamics through modification of leaf size curve and a reduction in the rate of leaf senescence for modern staygreen maize cultivars in China.The P concentration limits (maximum and minimum P concentrations in organs)at different stages also need to be adjusted.Our results further showed a curvilinear relationship between the measured Olsen-P concentration and simulated labile P content,which could facilitate the initialization of APSIM P pools in the NCP with Olsen-P measurements in future studies.It remains difficult to parameterize the APSIM SoilP module due to the conceptual nature of the pools and simplified conceptualization of key P transformation processes.A fundamental understanding still needs to be developed for modelling and predicting the fate of applied P fertilizers in soils with contrasting physical and chemical characteristics. 展开更多
关键词 MAIZE phosphorus availability modeling APSIM maize APSIM SoilP
下载PDF
Integrating phosphorus management and cropping technology for sustainable maize production
4
作者 Haiqing Gong Yue Xiang +4 位作者 Jiechen Wu Laichao Luo Xiaohui Chen Xiaoqiang Jiao Chen Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1369-1380,共12页
Achieving high maize yields and efficient phosphorus(P)use with limited environmental impacts is one of the greatest challenges in sustainable maize production.Increasing plant density is considered an effective appro... Achieving high maize yields and efficient phosphorus(P)use with limited environmental impacts is one of the greatest challenges in sustainable maize production.Increasing plant density is considered an effective approach for achieving high maize yields.However,the low mobility of P in soils and the scarcity of natural P resources have hindered the development of methods that can simultaneously optimize P use and mitigate the P-related environmental footprint at high plant densities.In this study,meta-analysis and substance flow analysis were conducted to evaluate the effects of different types of mineral P fertilizer on maize yield at varying plant densities and assess the flow of P from rock phosphate mining to P fertilizer use for maize production in China.A significantly higher yield was obtained at higher plant densities than at lower plant densities.The application of single superphosphate,triple super-phosphate,and calcium magnesium phosphate at high plant densities resulted in higher yields and a smaller environmental footprint than the application of diammonium phosphate and monoammonium phosphate.Our scenario analyses suggest that combining the optimal P type and application rate with a high plant density could increase maize yield by 22%.Further,the P resource use efficiency throughout the P supply chain increased by 39%,whereas the P-related environmental footprint decreased by 33%.Thus,simultaneously optimizing the P type and application rate at high plant densities achieved multiple objectives during maize production,indicating that combining P management with cropping techniques is a practical approach to sustainable maize production.These findings offer strategic,synergistic options for achieving sustainable agricultural development. 展开更多
关键词 MAIZE plant density mineral phosphorus fertilizer META-ANALYSIS substance flow analysis
下载PDF
Anisotropic Band Evolution of Bulk Black Phosphorus Induced by Uniaxial Tensile Strain
5
作者 邓亚丰 张艺琳 +7 位作者 赵亚飞 徐永康 代兴泽 王双海 陆显扬 黎遥 徐永兵 何亮 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期83-96,共14页
We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus(BP)using angle-resolved photoemission spectroscopy and density... We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus(BP)using angle-resolved photoemission spectroscopy and density functional theory.The results show that there are band crossings in the Z-L(armchair)direction. 展开更多
关键词 DIRECTIONS BULK phosphorus
原文传递
Optoelectronic Synapses Based on MXene/Violet Phosphorus van der Waals Heterojunctions for Visual‑Olfactory Crossmodal Perception
6
作者 Hailong Ma Huajing Fang +3 位作者 Xinxing Xie Yanming Liu He Tian Yang Chai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期38-52,共15页
The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal percept... The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics. 展开更多
关键词 Violet phosphorus MXene Van der Waals heterojunctions Optoelectronic synapses Crossmodal perception
下载PDF
Correlation and Pathway Analysis of the Carbon,Nitrogen,and Phosphorus in Soil-Microorganism-Plant with Main Quality Components of Tea(Camellia sinensis)
7
作者 Chun Mao Ji He +3 位作者 Xuefeng Wen Yangzhou Xiang Jihong Feng Yingge Shu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期487-502,共16页
The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.Howev... The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement. 展开更多
关键词 Soil-microorganisms-plant system CARBON NITROGEN phosphorus tea quality path analysis
下载PDF
On the Preparation of Low-Temperature-Rise and Low-Shrinkage Concrete Based on Phosphorus Slag
8
作者 Jianlong Jin Jingjing Ding +2 位作者 Long Xiong Ming Bao Peng Zeng 《Fluid Dynamics & Materials Processing》 EI 2024年第4期803-814,共12页
The effects of different contents of a MgO expansive agent and phosphorus slag on the mechanical properties,shrinkage behavior,and the heat of hydration of concrete were studied.The slump flow,setting time,dry shrinka... The effects of different contents of a MgO expansive agent and phosphorus slag on the mechanical properties,shrinkage behavior,and the heat of hydration of concrete were studied.The slump flow,setting time,dry shrinkage,and hydration heat were used as sensitive parameters to assess the response of the considered specimens.As shown by the results,in general,with an increase in the phosphorus slag content,the hydration heat of concrete decreases for all ages,but the early strength displays a downward trend and the dry shrinkage rate increases.The 90-d strength and dry shrinkage of concrete could be improved with a phosphorus residue content between 0%-20%,with the best performances in terms of mechanical properties and shrinkage characteristics being achieved for a content of 20 kg/m3.On the basis of these results,it can be concluded that appropriate amounts of phosphorus slag and MgO expansive agent can be used to improve the compressive strength of concrete in the later stage by reducing the hydration heat and dry shrinkage rate,respectively. 展开更多
关键词 phosphorus slag MgO expansion agent mass concrete hydration heat
下载PDF
Genome-wide and candidate gene association studies identify BnPAP17 as conferring the utilization of organic phosphorus in oilseed rape
9
作者 Ping Xu Hao Li +6 位作者 Haiyuan Li Ge Zhao Shengjie Dai Xiaoyu Cui Zhenning Liu Lei Shi Xiaohua Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1134-1149,共16页
Phosphorus(P)is essential for living plants,and P deficiency is one of the key factors limiting the yield in rapeseed production worldwide.As the most important organ for plants,root morphology traits(RMTs)play a key ... Phosphorus(P)is essential for living plants,and P deficiency is one of the key factors limiting the yield in rapeseed production worldwide.As the most important organ for plants,root morphology traits(RMTs)play a key role in P absorption.To investigate the genetic variability of RMT under low P availability,we dissected the genetic structure of RMTs by genome-wide association studies(GWAS),linkage mapping and candidate gene association studies(CGAS).A total of 52 suggestive loci were associated with RMTs under P stress conditions in 405 oilseed rape accessions.The purple acid phosphatase gene BnPAP17 was found to control the lateral root number(LRN)and root dry weight(RDW)under low P stress.The expression of BnPAP17 was increased in shoot tissue in P-efficient cultivars compared to root tissue and P-inefficient cultivars in response to low P stress.Moreover,the haplotype of BnPAP17^(Hap3)was detected for the selective breeding of P efficiency in oilseed rape.Over-expression of the BnPAP17^(Hap3)could promote the shoot and root growth with enhanced tolerance to low P stress and organic phosphorus(Po)utilization in oilseed rape.Collectively,these findings increase our understanding of the mechanisms underlying BnPAP17-mediated low P stress tolerance in oilseed rape. 展开更多
关键词 genome-wide association studies(GWAS) root morphology traits(RMTs) organic phosphorus(Po) oilseed rape BnPAP17
下载PDF
Screening of Polyphosphate Accumulating Organisms and Their Phosphorus Removal Performance
10
作者 Miaoxuan HONG Qitong LIANG +1 位作者 Yating HUANG Shasha LIU 《Asian Agricultural Research》 2024年第1期22-24,共3页
[Objectives]To study the phosphorus removal performance of phosphate accumulating organisms(PAOs).[Methods]Activated sludge from domestic sewage treatment plant was used as the strain source,and phosphate accumulating... [Objectives]To study the phosphorus removal performance of phosphate accumulating organisms(PAOs).[Methods]Activated sludge from domestic sewage treatment plant was used as the strain source,and phosphate accumulating organisms were screened by plate streaking method and dilution coating plate method.Six kinds of excellent phosphate accumulating organisms were obtained by metachromatic granule staining experiment,total phosphorus experiment and simulated sewage phosphorus removal experiment to assist the observation of bac-terial morphology and experiment of phosphorus removal capacity.In addition,the influencing factors of phosphorus removal capacity(nitrogen source,trace metal ions)were analyzed.[Results]In the case of simulated sewage,the phosphorus removal rate of strain b was the highest,reaching 66.25%,while the phosphorus removal rate of strain e and f was about 10%lower than that of the phosphorus uptake experiment.[Conclusions]This study is expected to provide a theoretical reference for the gradual optimization of the screening method of phosphorus re-moval bacteria in domestic sewage treatment. 展开更多
关键词 Phosphate accumulating organisms(PAOs) Separation and screening Biological phosphorus removal
下载PDF
Nitrogen and Phosphorus Removal from Lake Kinneret Inputs
11
作者 Moshe Gophen 《Open Journal of Ecology》 2024年第2期165-182,共18页
The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Popula... The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Population size was enhanced and the diary was developed intensively resulting in the enhancement of domestic and husbandry sewage production that increased as well. The natural intact Hula Valley-Lake Kinneret ecosystem was heavily anthropogenically interrupted: The Hula was drained and Kinneret became a national source for domestic water supply. Some aspects of the environmental and water quality protection policy of the system are presented. The causation and operational management implications for the reduction of Nitrogen and Phosphorus migration from the Hula Valley are discussed. Drastic (81%) restriction of aquaculture accompanied by sewage totally removed achieved a reasonable improvement in pollution control which was also supported by the Hula Project. The implications of anthropogenic intervention in the process of environmental management design are presented. 展开更多
关键词 Hula Valley JORDAN Kinneret NITROGEN phosphorus Peat Soil Fish Ponds Sewage Removal
下载PDF
Effects of Calcium and Magnesium on Phosphorus Availability in Ferralsols and Rice Production in Forest Zones of Côte d’Ivoire
12
作者 Guy Fernand Yao Brahima Kone +5 位作者 Kouadio Amani Franck Michaël Lemonou Bahan Jean Lopez Essehi Brou Kouame François Lompo Albert Yao-Kouame 《Journal of Agricultural Chemistry and Environment》 2024年第1期33-53,共21页
Phosphorus bioavailability has long been a recurring problem in tropical acid soils. A pot experiment was carried out during three (3) successive rice production cycles at Adiopodoumé to evaluate the response of ... Phosphorus bioavailability has long been a recurring problem in tropical acid soils. A pot experiment was carried out during three (3) successive rice production cycles at Adiopodoumé to evaluate the response of the NERICA 5 rice accession to various doses of calcium, magnesium and phosphorous. The experiment was conducted using a randomized split-plot design. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg·Ca·ha<sup>-1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg·Mg·ha<sup>-1</sup>) and Togo natural phosphate (0, 25, 50 and 75 kg·P·ha<sup>-1</sup>) were determined at each production cycle. The results showed that single-dose natural phosphate supplementation for three cropping cycles resulted in an average enrichment of around 2 mg·P·kg<sup>-1</sup> after each trial following its continuous dissolution, with an increase in DSP (33.31% to 70.52%). The study revealed one strategy for managing and enhancing native P with cations and another for exogenous P: there would be a synergy of Ca/Mg on native P, whereas an antagonism would characterize the two parameters in phosphate fertilization. 展开更多
关键词 Soil Acidity Native and Exogenous phosphorus Free Iron Ca/Mg Balances Rice Growing Côte d’Ivoire
下载PDF
Identifying the critical phosphorus balance for optimizing phosphorus input and regulating soil phosphorus effectiveness in a typical winter wheat-summer maize rotation system in North China
13
作者 XU Meng-ze WANG Yu-hong +6 位作者 NIE Cai-e SONG Gui-pei XIN Su-ning LU Yan-li BAI You-lu ZHANG Yin-jie WANG Lei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第12期3769-3782,共14页
Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which no... Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which not only wastes phosphate resources but also causes P accumulation and groundwater pollution.Here,we hypothesized that the apparent P balance of a crop system could be used as an indicator for identifying the critical P input in order to obtain a high yield with high phosphorus use efficiency(PUE).A 12-year field experiment with P fertilization rates of 0,45,90,135,180,and 225 kg P_(2)O_(5)ha^(-1)was conducted to determine the crop yield,PUE,and soil Olsen-P value response to P balance,and to optimize the P input.Annual yield stagnation occurred when the P fertilizer application exceeded a certain level,and high yield and PUE levels were achieved with annual P fertilizer application rates of 90-135 kg P_(2)O_(5)ha^(-1).A critical P balance range of 2.15-4.45 kg P ha^(-1)was recommended to achieve optimum yield with minimal environmental risk.The critical P input range estimated from the P balance was 95.7-101 kg P_(2)O_(5)ha^(-1),which improved relative yield(>90%)and PUE(90.0-94.9%).In addition,the P input-output balance helps in assessing future changes in Olsen-P values,which increased by 4.07 mg kg^(-1)of P for every 100 kg of P surplus.Overall,the P balance can be used as a critical indicator for P management in agriculture,providing a robust reference for limiting P excess and developing a more productive,efficient and environmentally friendly P fertilizer management strategy. 展开更多
关键词 yield of winter wheat and summer maize phosphorus balance phosphorus use efficiency OLSEN-P critical phosphorus application rate
下载PDF
NaCl Facilitates Cell Wall Phosphorus Reutilization in Abscisic Acid Dependent Manner in Phosphorus Deficient Rice Root
14
作者 YANG Xiaozheng LIU Yusong +4 位作者 HUANG Jing TAO Ye WANG Yifeng SHEN Renfang ZHU Xiaofang 《Rice science》 SCIE CSCD 2023年第2期138-147,共10页
Phosphorus(P) starvation in rice facilitates the reutilization of root cell wall P by enhancing the pectin content. NaCl modulates pectin content, however, it is still unknown whether NaCl is also involved in the proc... Phosphorus(P) starvation in rice facilitates the reutilization of root cell wall P by enhancing the pectin content. NaCl modulates pectin content, however, it is still unknown whether NaCl is also involved in the process of pectin regulated cell wall P remobilization in rice under P starved conditions. In this study, we found that 10 mmol/L NaCl increased the shoot and root biomasses under P deficiency to a remarkable extent, in company with the elevated shoot and root soluble P contents in rice. Further analysis indicated that exogenous NaCl enhanced the root cell wall P mobilization by increasing the pectin methylesterase activity and uronic acid content in pectin suggesting the involvement of NaCl in the process of cell wall P reutilization in P starved rice roots. Additionally, exogenous NaCl up-regulated the expression of P transporter OsPT6, which was induced by P deficiency, suggesting that NaCl also facilitated the P translocation prominently from root to shoot in P starved rice. Moreover, exogenous abscisic acid(ABA) can reverse the NaCl-mediated mitigation under P deficiency, indicating the involvement of ABA in the NaCl regulated root cell wall P reutilization. Taken together, our results demonstrated that NaCl can activate the reutilization of root cell wall P in P starved rice, which is dependent on the ABA accumulation pathway. 展开更多
关键词 abscisic acid cell wall NACL phosphorus transporter phosphorus deficiency REMOBILIZATION
下载PDF
Temporal Dynamics and Performance Association of the Tetrasphaera-Enriched Microbiome for Enhanced Biological Phosphorus Removal
15
作者 Hui Wang Yubo Wang +2 位作者 Guoqing Zhang Ze Zhao Feng Ju 《Engineering》 SCIE EI CAS CSCD 2023年第10期168-178,共11页
Tetrasphaera have been recently identified based on the 16S ribosomal RNA(rRNA)gene as among the most abundant polyphosphate-accumulating organisms(PAOs)in global full-scale wastewater treatment plants(WWTPs)with enha... Tetrasphaera have been recently identified based on the 16S ribosomal RNA(rRNA)gene as among the most abundant polyphosphate-accumulating organisms(PAOs)in global full-scale wastewater treatment plants(WWTPs)with enhanced biological phosphorus removal(EBPR).However,it is unclear how Tetrasphaera PAOs are selectively enriched in the context of the EBPR microbiome.In this study,an EBPR microbiome enriched with Tetrasphaera(accounting for 40%of 16S sequences on day 113)was built using a top-down design approach featuring multicarbon sources and a low dosage of allylthiourea.The microbiome showed enhanced nutrient removal(phosphorus removal~85%and nitrogen removal~80%)and increased phosphorus recovery(up to 23.2 times)compared with the seeding activated sludge from a local full-scale WWTP.The supply of 1 mg·L^(-1)allylthiourea promoted the coselection of Tetrasphaera PAOs and Microlunatus PAOs and sharply reduced the relative abundance of both ammonia oxidizer Nitrosomonas and putative competitors Brevundimonas and Paracoccus,facilitating the establishment of the EBPR microbiome.Based on 16S rRNA gene analysis,a putative novel PAO species,EBPR-ASV0001,was identified with Tetrasphaera japonica as its closest relative.This study provides new knowledge on the establishment of a Tetrasphaera-enriched microbiome facilitated by allylthiourea,which can be further exploited to guide future process upgrading and optimization to achieve and/or enhance simultaneous biological phosphorus and nitrogen removal from high-strength wastewater. 展开更多
关键词 Enhanced biological phosphorus removal(EBPR) Polyphosphate-accumulating organisms(PAOs) Tetrasphaera MICROBIOME phosphorus recovery
下载PDF
Drip fertigation and plant hedgerows significantly reduce nitrogen and phosphorus losses and maintain high fruit yields in intensive orchards 被引量:2
16
作者 SONG Ke QIN Qin +5 位作者 YANG Ye-feng SUN Li-juan SUN Ya-fei ZHENG Xian-qing Lü Wei-guang XUE Yong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第2期598-610,共13页
A field experiment was carried out to evaluate the effects of drip fertigation combined with plant hedgerows on nitrogen and phosphorus runoff losses in intensive pear orchards in the Tai Lake Basin.Nitrogen and phosp... A field experiment was carried out to evaluate the effects of drip fertigation combined with plant hedgerows on nitrogen and phosphorus runoff losses in intensive pear orchards in the Tai Lake Basin.Nitrogen and phosphorus runoff over a whole year were measured by using successional runoff water collection devices.The four experimental treatments were conventional fertilization(CK),drip fertigation(DF),conventional fertilization combined with plant hedgerows(C+H),and drip fertigation combined with plant hedgerows(D+H).The results from one year of continuous monitoring showed a significant positive correlation between precipitation and surface runoff discharge.Surface runoff discharge under the treatments without plant hedgerows totaled 15.86%of precipitation,while surface runoff discharge under the treatments with plant hedgerows totaled 12.82%of precipitation.Plant hedgerows reduced the number of runoff events and the amount of surface runoff.Precipitation is the main driving force for the loss of nitrogen and phosphorus in surface runoff,and fertilization is an important factor affecting the losses of nitrogen and phosphorus.In CK,approximately 7.36%of nitrogen and 2.63%of phosphorus from fertilization entered the surface water through runoff.Drip fertigation reduced the accumulation of nitrogen and phosphorus in the surface soil and lowered the runoff loss concentrations of total nitrogen(TN)and total phosphorus(TP).Drip fertigation combined with plant hedgerows significantly reduced the overall TN and TP losses by 45.38 and 36.81%,respectively,in comparison to the CK totals.Drip fertigation increased the vertical migration depth of nitrogen and phosphorus nutrients and reduced the accumulation of nitrogen and phosphorus in the surface soil,which increased the pear yield.The promotion of drip fertigation combined with plant hedgerows will greatly reduce the losses of nitrogen and phosphorus to runoff and maintain the high fruit yields in the intensive orchards of the Tai Lake Basin. 展开更多
关键词 drip fertigation plant hedgerows surface runoff nitrogen and phosphorus losses fruit yields
下载PDF
Differential Expression of Iron Deficiency Responsive Rice Genes under Low Phosphorus and Iron Toxicity Conditions and Association of OsIRO3 with Yield in Acidic Soils 被引量:1
17
作者 Ernieca Lyngdoh NONGBRI Sudip DAS +3 位作者 Karma Landup BHUTIA Aleimo G.MOMIN Mayank RAI Wricha TYAGI 《Rice science》 SCIE CSCD 2023年第1期58-69,共12页
With the hypothesis that iron(Fe) deficiency responsive genes may play a role in Fe toxicity conditions,we studied five such genes OsNAS1,OsNAS3,OsIRO2,OsIRO3 and OsYSL16 across six contrasting rice genotypes for expr... With the hypothesis that iron(Fe) deficiency responsive genes may play a role in Fe toxicity conditions,we studied five such genes OsNAS1,OsNAS3,OsIRO2,OsIRO3 and OsYSL16 across six contrasting rice genotypes for expression under high Fe and low phosphorus(P) conditions,and sequence polymorphism.Genotypes Sahbhagi Dhan,Chakhao Poirieton and Shasharang were high yielders with no bronzing symptom visible under Fe toxic field conditions,and BAM350 and BAM811 were low yielders but did not show bronzing symptoms.Hydroponic screening revealed that the number of crown roots and root length can be traits for consideration for identifying Fe toxicity tolerance in rice genotypes.Fe contents in rice roots and shoots of a high-yielding genotype KMR3 showing leaf bronzing were significantly high.In response to 24 h high Fe stress,the expression levels of OsNAS3 were up-regulated in all genotypes except KMR3.In response to 48 h high Fe stress,the expression levels of OsNAS1 were3-fold higher in tolerant Shasharang,whereas in KMR3,it was significantly down-regulated.Even in response to 7 d excess Fe stress,the transcript abundances of OsIRO2 and OsNAS3 were contrasting in genotypes Shasharang and KMR3.This suggested that the reported Fe deficiency genes had a role in Fe toxicity and that in genotype KMR3 under excess Fe stress,there was disruption of metal homeostasis.Under the 48 h low P conditions,OsIRO2 and OsYSL16 were significantly up-regulated in Fe tolerant genotype Shasharang and in low P tolerant genotype Chakhao Poirieton,respectively.In silico sequence analysis across 3 024 rice genotypes revealed polymorphism for 4 genes.Sequencing across OsIRO3and OsNAS3 revealed nucleotide polymorphism between tolerant and susceptible genotypes for Fe toxicity.Non-synonymous single nucleotide polymorphisms and insertion/deletions(InDels) differing in tolerant and susceptible genotypes were identified.A marker targeting 25-bp InDel in OsIRO3,when run on a diverse panel of 43 rice genotypes and a biparental population,was associated with superior performance for yield under acidic lowland field conditions.This study highlights the potential of one of the vital genes involved in Fe homeostasis as a genic target for improving rice yield in acidic soils. 展开更多
关键词 acidic soil low phosphorus iron toxicity OsNAS1 OsIRO3 RICE YIELD
下载PDF
Regulating solid electrolyte interphases on phosphorus/carbon anodes via localized high-concentration electrolytes for potassium-ion batteries 被引量:1
18
作者 Wei Xiao Peiyi Shi +7 位作者 Zhengkui Li Chong Xie Jian Qin Huijuan Yang Jingjing Wang Wenbin Li Jiujun Zhang Xifei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期589-605,I0016,共18页
The resourceful and inexpensive red phosphorus has emerged as a promising anode material of potassium-ion batteries(PIBs) for its large theoretical capacities and low redox potentials in the multielectron alloying/dea... The resourceful and inexpensive red phosphorus has emerged as a promising anode material of potassium-ion batteries(PIBs) for its large theoretical capacities and low redox potentials in the multielectron alloying/dealloying reactions,yet chronically suffering from the huge volume expansion/shrinkage with a sluggish reaction kinetics and an unsatisfactory interfacial stability against volatile electrolytes.Herein,we systematically developed a series of localized high-concentration electrolytes(LHCE) through diluting high-concentration ether electrolytes with a non-solvating fluorinated ether to regulate the formation/evolution of solid electrolyte interphases(SEI) on phosphorus/carbon(P/C) anodes for PIBs.Benefitting from the improved mechanical strength and structural stability of a robust/uniform SEI thin layer derived from a composition-optimized LHCE featured with a unique solvation structure and a superior K+migration capability,the P/C anode with noticeable pseudocapacitive behaviors could achieve a large reversible capacity of 760 mA h g^(-1)at 100 mA g^(-1),a remarkable capacity retention rate of 92.6% over 200 cycles at 800 mA g^(-1),and an exceptional rate capability of 334 mA h g^(-1)at8000 mA g^(-1).Critically,a suppressed reduction of ether solvents with a preferential decomposition of potassium salts in anion-derived interfacial reactions on P/C anode for LHCE could enable a rational construction of an outer organic-rich and inner inorganic-dominant SEI thin film with remarkable mechanical strength/flexibility to buffer huge volume variations and abundant K+diffusion channels to accelerate reaction kinetics.Additionally,the highly reversible/durable full PIBs coupling P/C anodes with annealed organic cathodes further verified an excellent practical applicability of LHCE.This encouraging work on electrolytes regulating SEI formation/evolution would advance the development of P/C anodes for high-performance PIBs. 展开更多
关键词 Potassium-ion batteries phosphorus/carbon anodes Localized high-concentration electrolytes Solid electrolyte interphases Interfacial stability
下载PDF
Role of Resuspended Sediments as Sources of Dissolved Inorganic Phosphorus Along Different Dimensions in the Subei Shoal, South Yellow Sea, China
19
作者 WANG Changyou ZHENG Ping +3 位作者 SU Rongguo LUO Zhuhua ZHANG Yuanzhi MAO Longjiang 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期161-170,共10页
Several studies have documented that during‘green tide’events,comprising green macroalgae blooms in aquatic ecosystems,dissolved inorganic phosphorus(DIP)levels remain relatively steady despite the absorption of a l... Several studies have documented that during‘green tide’events,comprising green macroalgae blooms in aquatic ecosystems,dissolved inorganic phosphorus(DIP)levels remain relatively steady despite the absorption of a large amount of DIP.In this study,surface sediment samples and a sediment core were extracted using a modified sequential extraction scheme,and water and surface sediment samples were analyzed in April 2017 to better understand phosphorus(P)cycling and replenishment in Subei shoal.We used a simple model on equilibrium of adsorption-desorption to present the buffering capacity of phosphate.The total P(TP)in the surface sediments ranged from 12.2 to 28.4μmol g^(-1)(average 15.5μmol g^(-1))and was dominated by inorganic P.TP,exchangeable P,reactive and reductive Fe/Al bound P,and authigenic apatite P significantly decreased northward and eastward from Subei shoal,contrary to the detrital P and organic P results.Dissolved and particulate inorganic P in the water samples ranged from 0.01 to 0.54μmol L^(-1)(average 0.19μmol L^(-1))and 0.9 to 19.6μmol g^(-1)(average 4.9μmol g^(-1)),respectively.The applied model showed that suspended particulate matter is an important regulator of DIP behavior.Thus,modification of SPM can alter the DIP buffering capacity.The calculated buffering capacity in the surface layer of the sea water was>60 within Subei shoal and always>10 along the path of floating Ulva prolifera,providing a reasonable explanation for the steady concentration of DIP and its replenishment during the blooming of this green macroalgae. 展开更多
关键词 phosphorus SPECIATION SEDIMENT buffering capacity South Yellow Sea
下载PDF
Phosphorus speciation,transformation and benthic processes with implications for environmental impacts in the aquaculture area of Rushan Bay
20
作者 Yao Feng Jun Liu +4 位作者 Aijun Zhang Yibin Wang Lu Wang Zongqing Lv Xiangbin Ran 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第8期99-112,共14页
Phosphorus(P)is an essential nutrient for many organisms in the ocean,which plays a central role in the stability of ecosystems and the evolution of the environment.The distribution,occurrence and source-sink process ... Phosphorus(P)is an essential nutrient for many organisms in the ocean,which plays a central role in the stability of ecosystems and the evolution of the environment.The distribution,occurrence and source-sink process of P in offshore waters are highly influenced by mariculture activities.P transformation in water-sediment system is the key process in P cycling,however,the mechanism is poorly documented in the coastal sea which is influenced by human activities.Based on the comprehensive surveys in the adjacent waters outside Rushan Bay in May,July and August 2014 and February 2015,the form and transformation of P in the suspended particulate matter(SPM)and surface sediment were analyzed.The results showed that contents of total P,authigenic P and organic P of SPM increased with the increase in distance from the shoreline off Rushan Bay,and the detrital-P decreased.The partition coefficient of P between water and SPM was related to the chemical activity of different forms of P,and a higher reactivity of inorganic P associated with SPM was observed.Hypoxia induced by mariculture changes the distribution and morphological composition of P in SPM and sediment in this typical aquaculture area,which can result in a conversion of sink to source of P in the sediment,thereby having a significant impact on the regional nutrient budget and associated with eutrophication. 展开更多
关键词 phosphorus speciation TRANSFORMATION benthic process AQUACULTURE Rushan Bay
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部