期刊文献+
共找到1,739篇文章
< 1 2 87 >
每页显示 20 50 100
BaTiO_(3)/p-GaN/Au self-driven UV photodetector with bipolar photocurrent controlled by ferroelectric polarization
1
作者 韩无双 刘可为 +6 位作者 杨佳霖 朱勇学 程祯 陈星 李炳辉 刘雷 申德振 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期202-207,共6页
Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector ... Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect.In this work,a BaTiO_(3)/p-GaN/Au hybrid heterojunction-Schottky self-driven ultraviolet photodetector was fabricated with excellent bipolar photoresponse property.At 0 V bias,the direction of the photocurrent can be switched by flipping the depolarization field of BaTiO_(3),which allows the performance of photodetectors to be controlled by the ferroelectric effect.Meanwhile,a relatively large responsivity and a fast response speed can be also observed.In particular,when the depolarization field of BaTiO_(3) is in the same direction of the built-in electric field of the Au/p-GaN Schottky junction(up polarized state),the photodetector exhibits a high responsivity of 18 mA/W at 360 nm,and a fast response speed of<40 ms at 0 V.These findings pave a new way for the preparation of high-performance photodetectors with bipolar photocurrents. 展开更多
关键词 ferroelectric effect BIPOLAR self-driven photodetector
原文传递
High responsivity photodetectors based on graphene/WSe_(2) heterostructure by photogating effect
2
作者 李淑萍 雷挺 +5 位作者 严仲兴 王燕 张黎可 涂华垚 时文华 曾中明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期728-733,共6页
Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material.However, the performance of graphene-based photodetectors is limited by weak absorption efficiency a... Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material.However, the performance of graphene-based photodetectors is limited by weak absorption efficiency and rapid recombination of photoexcited carriers, leading to poor photodetection performance. Here, inspired by the photogating effect, we demonstrated a highly sensitive photodetector based on graphene/WSe_(2) vertical heterostructure where the WSe_(2) layer acts as both the light absorption layer and the localized grating layer. The graphene conductive channel is induced to produce more carriers by capacitive coupling. Due to the strong light absorption and high external quantum efficiency of multilayer WSe_(2), as well as the high carrier mobility of graphene, a high photocurrent is generated in the vertical heterostructure. As a result, the photodetector exhibits ultra-high responsivity of 3.85×10~4A/W and external quantum efficiency of 1.3 × 10~7%.This finding demonstrates that photogating structures can effectively enhance the sensitivity of graphene-based photodetectors and may have great potential applications in future optoelectronic devices. 展开更多
关键词 WSe_(2) HETEROSTRUCTURE photodetector photogating effect
原文传递
Visible-to-near-infrared photodetectors based on SnS/SnSe_(2)and SnSe/SnSe_(2)p−n heterostructures with a fast response speed and high normalized detectivity
3
作者 Xinfa Zhu Weishuai Duan +6 位作者 Xiancheng Meng Xiyu Jia Yonghui Zhang Pengyu Zhou Mengjun Wang Hongxing Zheng Chao Fan 《Journal of Semiconductors》 EI CAS CSCD 2024年第3期76-83,共8页
The emergent two-dimensional(2D)material,tin diselenide(SnSe_(2)),has garnered significant consideration for its potential in image capturing systems,optical communication,and optoelectronic memory.Nevertheless,SnSe_(... The emergent two-dimensional(2D)material,tin diselenide(SnSe_(2)),has garnered significant consideration for its potential in image capturing systems,optical communication,and optoelectronic memory.Nevertheless,SnSe_(2)-based photodetection faces obstacles,including slow response speed and low normalized detectivity.In this work,photodetectors based on SnS/SnSe_(2)and SnSe/SnSe_(2)p−n heterostructures have been implemented through a polydimethylsiloxane(PDMS)−assisted transfer method.These photodetectors demonstrate broad-spectrum photoresponse within the 405 to 850 nm wavelength range.The photodetector based on the SnS/SnSe_(2)heterostructure exhibits a significant responsivity of 4.99×10^(3)A∙W^(−1),normalized detectivity of 5.80×10^(12)cm∙Hz^(1/2)∙W^(−1),and fast response time of 3.13 ms,respectively,owing to the built-in electric field.Meanwhile,the highest values of responsivity,normalized detectivity,and response time for the photodetector based on the SnSe/SnSe_(2)heterostructure are 5.91×10^(3)A∙W^(−1),7.03×10^(12)cm∙Hz^(1/2)∙W−1,and 4.74 ms,respectively.And their photodetection performances transcend those of photodetectors based on individual SnSe_(2),SnS,SnSe,and other commonly used 2D materials.Our work has demonstrated an effective strategy to improve the performance of SnSe_(2)-based photodetectors and paves the way for their future commercialization. 展开更多
关键词 two-dimensional materials tin diselenide HETEROSTRUCTURES broad-spectrum photodetectors
下载PDF
Ultraviolet Photodetector based on Sr_(2)Nb_(3)O_(10) Perovskite Nanosheets
4
作者 张斌斌 JIA Mengmeng +3 位作者 LIANG Qi WU Jinsong ZHAI Junyi 李宝文 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期282-287,共6页
Liquid-phase exfoliation was employed to synthesize Sr_(2)Nb_(3)O_(10) perovskite nanosheets with thicknesses down to 1.76 nm.Transmission electron microscopy(TEM),atomic force microscope(AFM),X-ray photoelectron spec... Liquid-phase exfoliation was employed to synthesize Sr_(2)Nb_(3)O_(10) perovskite nanosheets with thicknesses down to 1.76 nm.Transmission electron microscopy(TEM),atomic force microscope(AFM),X-ray photoelectron spectrometer(XPS),and other characterization techniques were used to evaluate the atomic structure and chemical composition of the exfoliated nanosheets.A UV photodetector based on individual Sr_(2)Nb_(3)O_(10) nanosheets was prepared to demonstrate the application of an ultraviolet(UV) photodetector.The UV photodetector exhibited outstanding photocurrent and responsivity with a responsivity of 3×10^(5) A·W^(-1) at 5 V bias under 280 nm illumination,a photocurrent of 60 nA,and an on/off ratio of 3×10^(2). 展开更多
关键词 perovskite nanosheets liquid-phase exfoliation ultraviolet photodetector
原文传递
Two-step growth of β-Ga_(2)O_(3) on c-plane sapphire using MOCVD for solar-blind photodetector
5
作者 Peipei Ma Jun Zheng +3 位作者 Xiangquan Liu Zhi Liu Yuhua Zuo Buwen Cheng 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期51-56,共6页
In this work,a two-step metal organic chemical vapor deposition(MOCVD)method was applied for growingβ-Ga_(2)O_(3) film on c-plane sapphire.Optimized buffer layer growth temperature(T_(B))was found at 700℃ and theβ-... In this work,a two-step metal organic chemical vapor deposition(MOCVD)method was applied for growingβ-Ga_(2)O_(3) film on c-plane sapphire.Optimized buffer layer growth temperature(T_(B))was found at 700℃ and theβ-Ga_(2)O_(3) film with full width at half maximum(FWHM)of 0.66°was achieved.A metal−semiconductor−metal(MSM)solar-blind photodetector(PD)was fabricated based on theβ-Ga_(2)O_(3) film.Ultrahigh responsivity of 1422 A/W@254 nm and photo-to-dark current ratio(PDCR)of 10^(6) at 10 V bias were obtained.The detectivity of 2.5×10^(15) Jones proved that the photodetector has outstanding performance in detecting weak signals.Moreover,the photodetector exhibited superior wavelength selectivity with rejection ratio(R_(250 nm)/R_(400 nm))of 105.These results indicate that the two-step method is a promising approach for preparation of high-qualityβ-Ga_(2)O_(3)films for high-performance solar-blind photodetectors. 展开更多
关键词 MOCVD two-step growth β-Ga_(2)O_(3) solar-blind photodetector responsivity
下载PDF
High-performance flexible perovskite photodetectors based on single-crystal-like two-dimensional Ruddlesden-Popper thin films 被引量:5
6
作者 Chao Liang Hao Gu +5 位作者 Junmin Xia Tanghao Liu Shiliang Mei Nan Zhang Yonghua Chen Guichuan Xing 《Carbon Energy》 SCIE CSCD 2023年第2期250-259,共10页
Two-dimensional Ruddlesden-Popper(2DRP)perovskites have attracted intense research interest for optoelectronic applications,due to their tunable optoelectronic properties and better environmental stability than their ... Two-dimensional Ruddlesden-Popper(2DRP)perovskites have attracted intense research interest for optoelectronic applications,due to their tunable optoelectronic properties and better environmental stability than their threedimensional counterparts.Furthermore,high-performance photodetectors based on single-crystal and polycrystalline thin-films 2DRP perovskites have shown great potential for practical application.However,the complex growth process of single-crystal membranes and uncontrollable phase distribution of polycrystalline films hinder the further development of 2DRP perovskites photodetectors.Herein,we report a series of high-performance photodetectors based on single-crystal-like phase-pure 2DRP perovskite films by designing a novel spacer source.Experimental and theoretical evidence demonstrates that phase-pure films substantially suppress defect states and ion migration.These highly sensitive photodetectors show I_(light)/I_(dark) ratio exceeding 3×10^(4),responsivities exceeding 16 A/W,and detectivities exceeding 3×10^(13) Jones,which are higher at least by 1 order than those of traditional mixed-phase thinfilms 2DRP devices(close to the reported single-crystal devices).More importantly,this strategy can significantly enhance the operational stability of optoelectronic devices and pave the way to large-area flexible productions. 展开更多
关键词 FLEXIBILITY photodetectorS single-crystal-like stability two-dimensional perovskites
下载PDF
Solvent-free fabrication of broadband WS2 photodetectors on paper 被引量:2
7
作者 Wenliang Zhang Onur Çakıroğlu +6 位作者 Abdullah Al-Enizi Ayman Nafady Xuetao Gan Xiaohua Ma Sruthi Kuriakose Yong Xie Andres Castellanos-Gomez 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第3期1-11,共11页
Paper-based devices have attracted extensive attention due to the growing demand for disposable flexible electronics.Herein,we integrate semiconducting devices on cellulose paper substrate through a simple abrasion te... Paper-based devices have attracted extensive attention due to the growing demand for disposable flexible electronics.Herein,we integrate semiconducting devices on cellulose paper substrate through a simple abrasion technique that yields high-performance photodetectors.A solvent-free WS_(2) film deposited on paper favors an effective electron-hole separation and hampers recombination.The as-prepared paper-based WS2 photodetectors exhibit a sensitive photoresponse over a wide spectral range spanning from ultraviolet(365 nm)to near-infrared(940 nm).Their responsivity value reaches up to~270 mA W^(−1) at 35 V under a power density of 35 mW cm^(−2).A high performance photodetector was achieved by controlling the environmental exposure as the ambient oxygen molecules were found to decrease the photoresponse and stability of the WS_(2) photodetector.Furthermore,we have built a spectrometer using such a paperbased WS_(2) device as the photodetecting component to illustrate its potential application.The present work could promote the development of cost-effective disposable photodetection devices. 展开更多
关键词 paper electronics photodetector van der Waals materials solvent-free deposition tungsten disulfide
下载PDF
All-Polymer Solar Cells and Photodetectors with Improved Stability Enabled by Terpolymers Containing Antioxidant Side Chains 被引量:1
8
作者 Chunyang Zhang Ao Song +7 位作者 Qiri Huang Yunhao Cao Zuiyi Zhong Youcai Liang Kai Zhang Chunchen Liu Fei Huang Yong Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期190-204,共15页
It is of vital importance to improve the long-term and photostability of organic photovoltaics,including organic solar cells(OSCs)and organic photodetectors(OPDs),for their ultimate industrialization.Herein,two series... It is of vital importance to improve the long-term and photostability of organic photovoltaics,including organic solar cells(OSCs)and organic photodetectors(OPDs),for their ultimate industrialization.Herein,two series of terpolymers featuring with an antioxidant butylated hydroxytoluene(BHT)-terminated side chain,PTzBI-EHp-BTBHTx and N2200-BTBHTx(x=0.05,0.1,0.2),are designed and synthesized.It was found that incorporating appropriate ratio of benzothiadiazole(BT)with BHT side chains on the conjugated backbone would induce negligible effect on the molecular weight,absorption spectra and energy levels of polymers,however,which would obviously enhance the photostability of these polymers.Consequently,all-polymer solar cells(all-PSCs)and photodetectors were fabricated,and the all-PSC based on PTzBI-EHp-BTBHT0.05:N2200 realized an optimal power conversion efficiency(PCE)approaching~10%,outperforming the device based on pristine PTzBI-EHp:N2200.Impressively,the all-PSCs based on BHT-featuring terpolymers displayed alleviated PCEs degradation under continuous irradiation for 300 h due to the improved morphological and photostability of active layers.The OPDs based on BHT-featuring terpolymers achieved a lower dark current at−0.1 bias,which could be stabilized even after irradiation over 400 h.This study provides a feasible approach to develop terpolymers with antioxidant efficacy for improving the lifetime of OSCs and OPDs. 展开更多
关键词 Organic photovoltaics Device operational stability All-polymer solar cell Organic photodetector ANTIOXIDANT
下载PDF
ZnO nanowires based degradable high-performance photodetectors for eco-friendly green electronics 被引量:1
9
作者 Bhavani Prasad Yalagala Abhishek Singh Dahiya Ravinder Dahiya 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第2期11-25,共15页
Disposable devices designed for single and/or multiple reliable measurements over a short duration have attracted considerable interest recently. However, these devices often use non-recyclable and non-biodegradable m... Disposable devices designed for single and/or multiple reliable measurements over a short duration have attracted considerable interest recently. However, these devices often use non-recyclable and non-biodegradable materials and wasteful fabrication methods. Herein, we present ZnO nanowires(NWs) based degradable high-performance UV photodetectors(PDs) on flexible chitosan substrate. Systematic investigations reveal the presented device exhibits excellent photo response, including high responsivity(55 A/W), superior specific detectivity(4×10^(14) jones), and the highest gain(8.5×10~(10)) among the reported state of the art biodegradable PDs. Further, the presented PDs display excellent mechanical flexibility under wide range of bending conditions and thermal stability in the measured temperature range(5–50 ℃).The biodegradability studies performed on the device, in both deionized(DI) water(pH≈6) and PBS solution(pH=7.4),show fast degradability in DI water(20 mins) as compared to PBS(48 h). These results show the potential the presented approach holds for green and cost-effective fabrication of wearable, and disposable sensing systems with reduced adverse environmental impact. 展开更多
关键词 transient electronics degradable devices ZnO nanowire CHITOSAN UV photodetector printed electronics
下载PDF
A self-powered ultraviolet photodetector based on a Ga_(2)O_(3)/Bi_(2)WO_(6)heterojunction with low noise and stable photoresponse 被引量:1
10
作者 杨莉莉 彭宇思 +4 位作者 刘增 张茂林 郭宇锋 杨勇 唐为华 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期605-612,共8页
A self-powered solar-blind ultraviolet(UV)photodetector(PD)was successfully constructed on a Ga_(2)O_(3)/Bi_(2)WO_(6)heterojunction,which was fabricated by spin-coating the hydrothermally grown Bi_(2)WO_(6)onto MOCVD-... A self-powered solar-blind ultraviolet(UV)photodetector(PD)was successfully constructed on a Ga_(2)O_(3)/Bi_(2)WO_(6)heterojunction,which was fabricated by spin-coating the hydrothermally grown Bi_(2)WO_(6)onto MOCVD-grown Ga_(2)O_(3)film.The results show that a typical type-I heterojunction is formed at the interface of the Ga_(2)O_(3)film and clustered Bi_(2)WO_(6),which demonstrates a distinct photovoltaic effect with an open-circuit voltage of 0.18 V under the irradiation of 254 nm UV light.Moreover,the Ga_(2)O_(3)/Bi_(2)WO_(6)PD displays excellent photodetection performance with an ultra-low dark current of~6 fA,and a high light-to-dark current ratio(PDCR)of 3.5 x 10^(4)in self-powered mode(0 V),as well as a best responsivity result of 2.21 mA/W in power supply mode(5 V).Furthermore,the PD possesses a stable and fast response speed under different light intensities and voltages.At zero voltage,the PD exhibits a fast rise time of 132 ms and 162 ms,as well as a quick decay time of 69 ms and 522 ms,respectively.In general,the newly attempted Ga_(2)O_(3)/Bi_(2)WO_(6)heterojunction may become a potential candidate for the realization of self-powered and high-performance UV photodetectors. 展开更多
关键词 Ga_(2)O_(3)/Bi_(2)WO_(6)heterojunction UV photodetector self-powered operation
原文传递
Photodetector based on Ruddlesden-Popper perovskite microwires with broader band detection
11
作者 Yongxu Yan Zhexin Li Zheng Lou 《Journal of Semiconductors》 EI CAS CSCD 2023年第8期41-47,共7页
Recently,the two-dimensional(2D)form of Ruddlesden-Popper perovskite(RPP)has been widely studied.However,the synthesis of one-dimensional(1D)RPP is rarely reported.Here,we fabricated a photodetector based on RPP micro... Recently,the two-dimensional(2D)form of Ruddlesden-Popper perovskite(RPP)has been widely studied.However,the synthesis of one-dimensional(1D)RPP is rarely reported.Here,we fabricated a photodetector based on RPP microwires(RPP-MWs)and compared it with a 2D-RPP photodetector.The results show that the RPP-MWs photodetector possesses a wider photoresponse range and higher responsivities of 233 A/W in the visible band and 30 A/W in the near-infrared(NIR)band.The analyses show that the synthesized RPP-MWs have a multi-layer,heterogeneous core-shell structure.This structure gives RPP-MWs a unique band structure,as well as abundant trap states and defect levels,which enable them to acquire better photoresponse performance.This configuration of RPP-MWs provides a new idea for the design and application of novel heterostructures. 展开更多
关键词 Ruddlesden-Popper perovskite MICROWIRES photodetector CORE-SHELL HETEROJUNCTION
下载PDF
Split-Ring Structured All-Inorganic Perovskite Photodetector Arrays for Masterly Internet of Things
12
作者 Bori Shi Pingyang Wang +7 位作者 Jingyun Feng Chang Xue Gaojie Yang Qingwei Liao Mengying Zhang Xingcai Zhang Weijia Wen Jinbo Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期25-42,共18页
Photodetectors with long detection distances and fast response are important media in constructing a non-contact human-machine interface for the Masterly Internet of Things(MIT).All-inorganic perovskites have excellen... Photodetectors with long detection distances and fast response are important media in constructing a non-contact human-machine interface for the Masterly Internet of Things(MIT).All-inorganic perovskites have excellent optoelectronic performance with high moisture and oxygen resistance,making them one of the promising candidates for high-performance photodetectors,but a simple,low-cost and reliable fabrication technology is urgently needed.Here,a dual-function laser etching method is developed to complete both the lyophilic split-ring structure and electrode patterning.This novel split-ring structure can capture the perovskite precursor droplet efficiently and achieve the uniform and compact deposition of CsPbBr3 films.Furthermore,our devices based on laterally conducting split-ring structured photodetectors possess outstanding performance,including the maximum responsivity of 1.44×105 mA W^(−1),a response time of 150μs in 1.5 kHz and one-unit area<4×10-2 mm2.Based on these split-ring photodetector arrays,we realized three-dimensional gesture detection with up to 100 mm distance detection and up to 600 mm s^(−1) speed detection,for low-cost,integrative,and non-contact human-machine interfaces.Finally,we applied this MIT to wearable and flexible digital gesture recognition watch panel,safe and comfortable central controller integrated on the car screen,and remote control of the robot,demonstrating the broad potential applications. 展开更多
关键词 Split-ring DEWETTING Perovskite photodetector array Human-machine interface Gesture recognition
下载PDF
Facile integration of an Al-rich Al_(1-x)In_(x)N photodetector on free-standing GaN by radio-frequency magnetron sputtering
13
作者 刘新科 林之晨 +12 位作者 林钰恒 陈建金 邹苹 周杰 李博 沈龙海 朱德亮 刘强 俞文杰 黎晓华 顾泓 王新中 黄双武 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期591-597,共7页
Al_(1-x)In_(x)N, a Ⅲ-nitride semiconductor material, is currently of great research interest due to its remarkable physical properties and chemical stability. When the Al and In compositions are tuned, its band-gap e... Al_(1-x)In_(x)N, a Ⅲ-nitride semiconductor material, is currently of great research interest due to its remarkable physical properties and chemical stability. When the Al and In compositions are tuned, its band-gap energy varies from 0.7 eV to 6.2 eV, which shows great potential for application in photodetectors. Here, we report the fabrication and performance evaluation of integrated Al_(1-x)In_(x)N on a free-standing GaN substrate through direct radio-frequency magnetron sputtering.The optical properties of Al_(1-x)In_(x)N will be enhanced by the polarization effect of a heterostructure composed of Al_(1-x)In_(x)N and other Ⅲ-nitride materials. An Al_(1-x)In_(x)N/Ga N visible-light photodetector was prepared by semiconductor fabrication technologies such as lithography and metal deposition. The highest photoresponsivity achieved was 1.52 A·W^(-1)under 365 nm wavelength illumination and the photodetector was determined to have the composition Al0.75In0.25N/GaN.A rise time of 0.55 s was observed after transient analysis of the device. The prepared Al_(1-x)In_(x)N visible-light photodetector had a low dark current, high photoresponsivity and fast response speed. By promoting a low-cost, simple fabrication method,this study expands the application of ternary alloy Al_(1-x)In_(x)N visible-light photodetectors in optical communication. 展开更多
关键词 Ali-xIn N photodetector GaN radio-frequency magnetron sputtering ternary alloy
原文传递
Ultraviolet photodetectors based on ferroelectric depolarization field
14
作者 Xiaoyu Zhou Qingqing Ke +2 位作者 Silin Tang Jilong Luo Zihan Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期487-498,I0013,共13页
Ultraviolet(UV)photodetectors are extensively adopted in the fields of the Internet of Things,optical communications and imaging.Nowadays,with broadening the application scope of UV photodetectors,developing integrate... Ultraviolet(UV)photodetectors are extensively adopted in the fields of the Internet of Things,optical communications and imaging.Nowadays,with broadening the application scope of UV photodetectors,developing integrated devices with more functionalities rather than basic photo-detecting ability are highly required and have been triggered ever-growing interest in scientific and industrial communities.Ferroelectric thin films have become a potential candidate in the field of UV detection due to their wide bandgap and unique photovoltaic characteristics.Additionally,ferroelectric thin films perform excellent dielectric,piezoelectric,pyroelectric,acousto-optic effects,etc.,which can satisfy the demand for the diversified development of UV detectors.In this review,according to the different roles of ferroelectric thin films in the device,the UV photodetectors based on ferroelectric films are classified into ferroelectric depolarization field driven type,ferroelectric depolarization field and built-in electric field co-driven type,and ferroelectric field enhanced type.These three types of ferroelectric UV photodetectors have great potential and are expected to promote the development of a new generation of UV detection technology.At the end of the paper,the advantages and challenges of three types of ferroelectric UV photodetectors are summarized,and the possible development direction in the future is proposed. 展开更多
关键词 UV photodetector FERROELECTRIC Thin film Depolarization field Built-in electric field
下载PDF
High performance solar-blind deep ultraviolet photodetectors viaβ-phase(In_(0.09)Ga_(0.91))_(2)O_(3)single crystalline film
15
作者 王必成 汤梓荧 +5 位作者 郑湖颖 王立胜 王亚琪 王润晨 丘志仁 朱海 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期559-565,共7页
We successfully fabricate a high performanceβ-phase(In_(0.09)Ga_(0.91))_(2)O_(3)single-crystalline film deep ultraviolet(DUV)solar-blind photodetector.The 2-inches high crystalline quality film is hetero-grown on the... We successfully fabricate a high performanceβ-phase(In_(0.09)Ga_(0.91))_(2)O_(3)single-crystalline film deep ultraviolet(DUV)solar-blind photodetector.The 2-inches high crystalline quality film is hetero-grown on the sapphire substrates using the plasma-assisted molecular beam epitaxy(PA-MBE).The smooth InGaO single crystalline film is used to construct the solar-blind DUV detector,which utilized an interdigitated Ti/Au electrode with a metal-semiconductor-metal structure.The device exhibits a low dark current of 40 pA(0 V),while its UV photon responsivity exceeds 450 A/W(50 V)at the peak wavelength of 232 nm with illumination intensity of 0.21 m W/cm^(2)and the UV/VIS rejection ratio(R232 nm/R380 nm)exceeds 4×10^(4).Furthermore,the devices demonstrate ultrafast transient characteristics for DUV signals,with fast-rising and fast-falling times of 80 ns and 420 ns,respectively.This excellent temporal dynamic behavior can be attributed to indium doping can adjust the electronic structure of Ga_(2)O_(3)alloys to enhance the performance of InGaO solar-blind detectors.Additionally,a two-dimensional DUV scanning image is captured using the InGaO photodetector as a sensor in an imaging system.Our results pave the way for future applications of two-dimensional array DUV photodetectors based on the large-scale InGaO heteroepitaxially grown alloy wide bandgap semiconductor films. 展开更多
关键词 deep ultraviolet FILM photodetector HETEROEPITAXY
原文传递
75 GHz germanium waveguide photodetector with 64 Gbps data rates utilizing an inductive-gain-peaking technique
16
作者 Xiuli Li Yupeng Zhu +6 位作者 Zhi Liu Linzhi Peng Xiangquan Liu Chaoqun Niu Jun Zheng Yuhua Zuo Buwen Cheng 《Journal of Semiconductors》 EI CAS CSCD 2023年第1期79-84,共6页
High-performance germanium(Ge)waveguide photodetectors are designed and fabricated utilizing the inductivegain-peaking technique.With the appropriate integrated inductors,the 3-dB bandwidth of photodetectors is signif... High-performance germanium(Ge)waveguide photodetectors are designed and fabricated utilizing the inductivegain-peaking technique.With the appropriate integrated inductors,the 3-dB bandwidth of photodetectors is significantly improved owing to the inductive-gain-peaking effect without any compromises to the dark current and optical responsivity.Measured 3-dB bandwidth up to 75 GHz is realized and clear open eye diagrams at 64 Gbps are observed.In this work,the relationship between the frequency response and large signal transmission characteristics on the integrated inductors of Ge waveguide photodetectors is investigated,which indicates the high-speed performance of photodetectors using the inductive-gainpeaking technique. 展开更多
关键词 GERMANIUM photodetectorS inductive-gain-peaking optical interconnection
下载PDF
Ultra-high photoresponsive photodetector based on ReS_(2)/SnS_(2)heterostructure
17
作者 王冰辉 邢艳辉 +7 位作者 董晟园 李嘉豪 韩军 涂华垚 雷挺 贺雯馨 张宝顺 曾中明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期545-551,共7页
Photodetectors based on two-dimensional materials have attracted much attention because of their unique structure and outstanding performance.The response speed of single ReS_(2)photodetector is slow exceptionally,the... Photodetectors based on two-dimensional materials have attracted much attention because of their unique structure and outstanding performance.The response speed of single ReS_(2)photodetector is slow exceptionally,the heterostructure could improves the response speed of ReS_(2)-based photodetector,but the photodetectors responsivity is reduced greatly,which restricts the development of ReS_(2).In this paper,a vertically structured ReS_(2)/SnS_(2)van der Waals heterostructure photodetectors is prepared,using ReS_(2)as the transport layer and SnS_(2)as the light absorbing layer to regulate the channel current.The device has an ultra-high photoconductive gain of 10^(10),which exhibits an ultra-high responsivity of4706 A/W under 365-nm illumination and response speed in seconds,and has an ultra-high external quantum efficiency of1.602×10^(6)%and a high detectivity of 5.29×10^(12)jones.The study for ReS_(2)-based photodetector displays great potential for developing future optoelectronic devices. 展开更多
关键词 two-dimensional material ReS_(2) HETEROSTRUCTURE photodetector
原文传递
High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
18
作者 蒋俊锴 常发冉 +8 位作者 周文广 李农 陈伟强 蒋洞微 郝宏玥 王国伟 吴东海 徐应强 牛智川 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期589-593,共5页
High performance short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices on GaSb substrate have been demonstrated.At 300 K,the device exhibits a 50%cut-off wavelength of~2.1μm as predicted ... High performance short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices on GaSb substrate have been demonstrated.At 300 K,the device exhibits a 50%cut-off wavelength of~2.1μm as predicted from the band structure calculation;the device responsivity peaks at 0.85 A/W,corresponding to a quantum efficiency(QE)of 56%for 2.0μm-thick absorption region.The dark current density of 1.03×10^(-3)A/cm^(2)is obtained under 50 mV applied bias.The device exhibits a saturated dark current shot noise limited specific detectivity(D*)of 3.29×1010cm·Hz^(1/2)/W(at a peak responsivity of 2.0μm)under-50 mV applied bias. 展开更多
关键词 photodetectorS INFRARED SUPERLATTICES
原文传递
Multilayered PdTe_(2)/thin Si heterostructures as self-powered flexible photodetectors with heart rate monitoring ability
19
作者 Chengyun Dong Xiang An +4 位作者 Zhicheng Wu Zhiguo Zhu Chao Xie Jian-An Huang Linbao Luo 《Journal of Semiconductors》 EI CAS CSCD 2023年第11期42-51,共10页
Two-dimensional layered material/semiconductor heterostructures have emerged as a category of fascinating architectures for developing highly efficient and low-cost photodetection devices.Herein,we present the constru... Two-dimensional layered material/semiconductor heterostructures have emerged as a category of fascinating architectures for developing highly efficient and low-cost photodetection devices.Herein,we present the construction of a highly efficient flexible light detector operating in the visible-near infrared wavelength regime by integrating a PdTe2 multilayer on a thin Si film.A representative device achieves a good photoresponse performance at zero bias including a sizeable current on/off ratio exceeding 105,a decent responsivity of~343 mA/W,a respectable specific detectivity of~2.56×10^(12)Jones,and a rapid response time of 4.5/379μs,under 730 nm light irradiation.The detector also displays an outstanding long-term air stability and operational durability.In addition,thanks to the excellent flexibility,the device can retain its prominent photodetection performance at various bending radii of curvature and upon hundreds of bending tests.Furthermore,the large responsivity and rapid response speed endow the photodetector with the ability to accurately probe heart rate,suggesting a possible application in the area of flexible and wearable health monitoring. 展开更多
关键词 2D layered material heterostructure FLEXIBLE photodetector health monitoring
下载PDF
Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation
20
作者 Yingjie Zhao Xing Yin +4 位作者 Pengwei Li Ziqiu Ren Zhenkun Gu Yiqiang Zhang Yanlin Song 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期565-594,共30页
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implement... Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented. 展开更多
关键词 Perovskite materials Crystal structure design Micro/nano-structure manipulation Working mechanism Multifunctional photodetectors
下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部