We propose dynamic terahertz(THz) emission microscopy(DTEM) to visualize temporal–spatial dynamics of photoexcited carriers in electronic materials. DTEM utilizes THz pulses emitted from a sample by probe pulses irra...We propose dynamic terahertz(THz) emission microscopy(DTEM) to visualize temporal–spatial dynamics of photoexcited carriers in electronic materials. DTEM utilizes THz pulses emitted from a sample by probe pulses irradiated after pump pulse irradiation to perform time-resolved two-dimensional mapping of the THz pulse emission, reflecting various carrier dynamics. Using this microscopy, we investigated carrier dynamics in the gap region of low-temperature-grown Ga As and semi-insulating Ga As photoconductive switches of the identical-dipole type. The observed DTEM images are well explained by the change in the electric potential distribution between the electrodes caused by the screening effect of the photoexcited electron-hole pairs.展开更多
文摘We propose dynamic terahertz(THz) emission microscopy(DTEM) to visualize temporal–spatial dynamics of photoexcited carriers in electronic materials. DTEM utilizes THz pulses emitted from a sample by probe pulses irradiated after pump pulse irradiation to perform time-resolved two-dimensional mapping of the THz pulse emission, reflecting various carrier dynamics. Using this microscopy, we investigated carrier dynamics in the gap region of low-temperature-grown Ga As and semi-insulating Ga As photoconductive switches of the identical-dipole type. The observed DTEM images are well explained by the change in the electric potential distribution between the electrodes caused by the screening effect of the photoexcited electron-hole pairs.