Using the entangled state representation, we convert a two-mode squeezed number state to a Hermite polynomial excited squeezed vacuum state. We first analytically derive the photon number distribution of the two-mode ...Using the entangled state representation, we convert a two-mode squeezed number state to a Hermite polynomial excited squeezed vacuum state. We first analytically derive the photon number distribution of the two-mode squeezed thermal states. It is found that it is a Jacobi polynomial; a remarkable result. This result can be directly applied to obtaining the photon number distribution of non-Gaussian states generated by subtracting from (adding to) two-mode squeezed thermal states.展开更多
From the normally ordered form of the density operator of a squeezed coherent state(SCS),we directly derive the compact expression of the SCS's photon-number distribution(PND).Besides the known oscillation charac...From the normally ordered form of the density operator of a squeezed coherent state(SCS),we directly derive the compact expression of the SCS's photon-number distribution(PND).Besides the known oscillation characteristics,we find that the PND is a periodic function with a period of π and extremely sensitive to phase.If the squeezing is strong enough,and the compound phase which is relevant to the complex squeezing and displacement parameters are assigned appropriate values,different oscillation behaviours in PND for even and odd photon numbers appear,respectively.展开更多
SARG04 protocol has its advantages in defending photon number splitting attack, benefited from two-photon pulses part. In this paper, we present a passive decoy state SARG04 scheme combining with practical photon numb...SARG04 protocol has its advantages in defending photon number splitting attack, benefited from two-photon pulses part. In this paper, we present a passive decoy state SARG04 scheme combining with practical photon number resolving (PNR) detectors. Two kinds of practical detectors, transition-edge sensor and time-multiplexing detector, are taken into consideration. Theoretical analysis shows that both of them are compatible with the passive decoy state SARG04. Compared with the original SARG04, two detectors can boost the key generation rate and maximal secure distance obviously. Meanwhile, the result shows that quantum efficiency and dark count of the detector influence the maximal distance slightly, which indicates the prospect of implementation in real quantum key distribution system with imperfect practical PNS detectors.展开更多
We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolv...We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolving measure- ment based on the weak cross-Kerr nonlinearities (XKNLs) and two quantum bus beams; the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate. It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed. Compared with the existing optical multi-qubit or controlled gates, which utilize XKNLs and homodyne detectors, the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence. According to the CU gate, we present a BTQI scheme in which the two unknown states of photons between two parties (Alice and Bob) are mutually swapped by transferring only a single photon. Consequently, by using the proposed CU gate, it is possible to experimentally implement the BTQI scheme with a certain probability of success.展开更多
From the normally ordered form of the density operator of a squeezed coherent state(SCS),we directly derive the compact expression of the SCS’s photon-number distribution(PND).Besides the known oscillation characteri...From the normally ordered form of the density operator of a squeezed coherent state(SCS),we directly derive the compact expression of the SCS’s photon-number distribution(PND).Besides the known oscillation characteristics,we find that the PND is a periodic function with a period of π and extremely sensitive to phase.If the squeezing is strong enough,and the compound phase which is relevant to the complex squeezing and displacement parameters are assigned appropriate values,different oscillation behaviours in PND for even and odd photon numbers appear,respectively.展开更多
Efficient and precise photon-number-resolving detectors are essential for optical quantum information science.Despite this,very few detectors have been able to distinguish photon numbers with both high fidelity and a ...Efficient and precise photon-number-resolving detectors are essential for optical quantum information science.Despite this,very few detectors have been able to distinguish photon numbers with both high fidelity and a large dynamic range,all while maintaining high speed and high timing precision.Superconducting nanostrip-based detectors excel at counting single photons efficiently and rapidly,but face challenges in balancing dynamic range and fidelity.Here,we have pioneered the demonstration of 10 true photon-number resolution using a superconducting microstrip detector,with readout fidelity reaching an impressive 98%and 90%for 4-photon and 6-photon events,respectively.Furthermore,our proposed dual-channel timing setup drastically reduces the amount of data acquisition by 3 orders of magnitude,allowing for real-time photon-number readout.We then demonstrate the utility of our scheme by implementing a quantum random-number generator based on sampling the parity of a coherent state,which guarantees inherent unbiasedness,robustness against experimental imperfections and environmental noise,as well as invulnerability to eavesdropping.Our solution boasts high fidelity,a large dynamic range,and real-time characterization for photon-number resolution and simplicity with respect to device structure,fabrication,and readout,which may provide a promising avenue towards optical quantum information science.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11047133, 60978009, and 10774088)the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023)+2 种基金the "973" Project (Grant No. 2011CBA00200)the Natural Science Foundation of Jiangxi Province of China (No. 2010GQW0027)the Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University
文摘Using the entangled state representation, we convert a two-mode squeezed number state to a Hermite polynomial excited squeezed vacuum state. We first analytically derive the photon number distribution of the two-mode squeezed thermal states. It is found that it is a Jacobi polynomial; a remarkable result. This result can be directly applied to obtaining the photon number distribution of non-Gaussian states generated by subtracting from (adding to) two-mode squeezed thermal states.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11175113)the Natural Science Foundation of Shandong Province,China (Grant No. ZR2010AQ024)the Scientific Research Foundation of Heze University of Shandong Province,China (Grant No. XYJJKJ-1)
文摘From the normally ordered form of the density operator of a squeezed coherent state(SCS),we directly derive the compact expression of the SCS's photon-number distribution(PND).Besides the known oscillation characteristics,we find that the PND is a periodic function with a period of π and extremely sensitive to phase.If the squeezing is strong enough,and the compound phase which is relevant to the complex squeezing and displacement parameters are assigned appropriate values,different oscillation behaviours in PND for even and odd photon numbers appear,respectively.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB921900)the National Natural Science Foundation of China (Grant Nos. 60537020 and 60621064)the Innovation Funds of the Chinese Academy of Sciences
文摘SARG04 protocol has its advantages in defending photon number splitting attack, benefited from two-photon pulses part. In this paper, we present a passive decoy state SARG04 scheme combining with practical photon number resolving (PNR) detectors. Two kinds of practical detectors, transition-edge sensor and time-multiplexing detector, are taken into consideration. Theoretical analysis shows that both of them are compatible with the passive decoy state SARG04. Compared with the original SARG04, two detectors can boost the key generation rate and maximal secure distance obviously. Meanwhile, the result shows that quantum efficiency and dark count of the detector influence the maximal distance slightly, which indicates the prospect of implementation in real quantum key distribution system with imperfect practical PNS detectors.
文摘We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolving measure- ment based on the weak cross-Kerr nonlinearities (XKNLs) and two quantum bus beams; the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate. It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed. Compared with the existing optical multi-qubit or controlled gates, which utilize XKNLs and homodyne detectors, the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence. According to the CU gate, we present a BTQI scheme in which the two unknown states of photons between two parties (Alice and Bob) are mutually swapped by transferring only a single photon. Consequently, by using the proposed CU gate, it is possible to experimentally implement the BTQI scheme with a certain probability of success.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11175113)the Natural Science Foundation of Shandong Province,China (Grant No. ZR2010AQ024)the Scientific Research Foundation of Heze University of Shandong Province,China (Grant No. XYJJKJ-1)
文摘From the normally ordered form of the density operator of a squeezed coherent state(SCS),we directly derive the compact expression of the SCS’s photon-number distribution(PND).Besides the known oscillation characteristics,we find that the PND is a periodic function with a period of π and extremely sensitive to phase.If the squeezing is strong enough,and the compound phase which is relevant to the complex squeezing and displacement parameters are assigned appropriate values,different oscillation behaviours in PND for even and odd photon numbers appear,respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.62301541,61971408,61827823,and 12033007)support from Shanghai Sailing Program(Grant No.23YF1456200)
文摘Efficient and precise photon-number-resolving detectors are essential for optical quantum information science.Despite this,very few detectors have been able to distinguish photon numbers with both high fidelity and a large dynamic range,all while maintaining high speed and high timing precision.Superconducting nanostrip-based detectors excel at counting single photons efficiently and rapidly,but face challenges in balancing dynamic range and fidelity.Here,we have pioneered the demonstration of 10 true photon-number resolution using a superconducting microstrip detector,with readout fidelity reaching an impressive 98%and 90%for 4-photon and 6-photon events,respectively.Furthermore,our proposed dual-channel timing setup drastically reduces the amount of data acquisition by 3 orders of magnitude,allowing for real-time photon-number readout.We then demonstrate the utility of our scheme by implementing a quantum random-number generator based on sampling the parity of a coherent state,which guarantees inherent unbiasedness,robustness against experimental imperfections and environmental noise,as well as invulnerability to eavesdropping.Our solution boasts high fidelity,a large dynamic range,and real-time characterization for photon-number resolution and simplicity with respect to device structure,fabrication,and readout,which may provide a promising avenue towards optical quantum information science.