期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of Photosynthetic Bacteria-enhanced Biological Floc Replacement Diets on Tilapia Growth,Water Environment and Water Microbial Diversity
1
作者 Yuanyuan DONG Limin FAN +4 位作者 Liping QIU Dandan LI Lu QIN Xinxu DONG Jiazhang CHEN 《Agricultural Biotechnology》 CAS 2020年第5期73-79,82,共8页
With Oreochromis niloticus as the object of study,glucose was added as a carbon source to promote the formation of the biological flocs for replacing part of the feed,and three gradients were set up,namely Group A(all... With Oreochromis niloticus as the object of study,glucose was added as a carbon source to promote the formation of the biological flocs for replacing part of the feed,and three gradients were set up,namely Group A(all feed),Group B(replacement of 10%feed)and Group C(replacement of 20%feed),so as to explore the effects of photosynthetic bacteria-enhanced biological flocs on tilapia growth and water environment conditions.Meanwhile,the Biolog-ECO technology was applied to study the changes of microbial carbon metabolism diversity in aquaculture water.The results showed that the utilization of microbial carbon sources under different feed replacement gradients increased with the extension of the culture time.The overall performance was in order of 10%replacement>all feed>20%feed replacement.A suitable replacement rate could not only enhance the overall utilization of carbon sources by water microorganisms,but also save culture costs.The principal component analysis showed that the carbon source metabolism of the water microbial communities under different feed replacement gradients was significantly different.Specifically,polysaccharides,esters and amino acids were the preferred carbon sources of water microbes,while the utilization of amines and acids was low. 展开更多
关键词 photosynthetic bacteria Biological floc Bait substitute Microbial community TILAPIA
下载PDF
Polydopamine-coated photoautotrophic bacteria for improving extracellular electron transfer in living photovoltaics 被引量:1
2
作者 Melania Reggente Charlotte Roullier +9 位作者 Mohammed Mouhib Patricia Brandl Hanxuan Wang Stefano Tacconi Francesco Mura Luciana Dini Rossella Labarile Massimo Trotta Fabian Fischer Ardemis A.Boghossian 《Nano Research》 SCIE EI CSCD 2024年第2期866-874,共9页
Living photovoltaics are microbial electrochemical devices that use whole cell–electrode interactions to convert solar energy to electricity.The bottleneck in these technologies is the limited electron transfer betwe... Living photovoltaics are microbial electrochemical devices that use whole cell–electrode interactions to convert solar energy to electricity.The bottleneck in these technologies is the limited electron transfer between the microbe and the electrode surface.This study focuses on enhancing this transfer by engineering a polydopamine(PDA)coating on the outer membrane of the photosynthetic microbe Synechocystis sp.PCC6803.This coating provides a conductive nanoparticle shell to increase electrode adhesion and improve microbial charge extraction.A combination of scanning electron microscopy(SEM),transmission electron microscopy(TEM),UV–Vis absorption,and Raman spectroscopy measurements were used to characterize the nanoparticle shell under various synthesis conditions.The cell viability and activity were further assessed through oxygen evolution,growth curve,and confocal fluorescence microscopy measurements.The results show sustained cell growth and detectable PDA surface coverage under slightly alkaline conditions(pH 7.5)and at low initial dopamine(DA)concentrations(1 mM).The exoelectrogenicity of the cells prepared under these conditions was also characterized through cyclic voltammetry(CV)and chronoamperometry(CA).The measurements show a three-fold enhancement in the photocurrent at an applied bias of 0.3 V(vs.Ag/AgCl[3 M KCl])compared to non-coated cells.This study thus lays the framework for engineering the next generation of living photovoltaics with improved performances using biosynthetic electrodes. 展开更多
关键词 biophotovoltaics BIOELECTRONICS photosynthetic bacteria CYANObacteria POLYDOPAMINE ADHERENCE
原文传递
In vivo polydopamine coating of Rhodobacter sphaeroides for enhanced electron transfer
3
作者 Rossella Labarile Danilo Vona +7 位作者 Maria Varsalona Matteo Grattieri Melania Reggente Roberto Comparelli Gianluca M.Farinola Fabian Fischer Ardemis A.Boghossian Massimo Trotta 《Nano Research》 SCIE EI CSCD 2024年第2期875-881,共7页
Recent advances in coupling light-harvesting microorganisms with electronic components have led to a new generation of biohybrid devices based on microbial photocatalysts.These devices are limited by the poorly conduc... Recent advances in coupling light-harvesting microorganisms with electronic components have led to a new generation of biohybrid devices based on microbial photocatalysts.These devices are limited by the poorly conductive interface between phototrophs and synthetic materials that inhibit charge transfer.This study focuses on overcoming this bottleneck through the metabolically-driven encapsulation of photosynthetic cells with a bio-inspired conductive polymer.Cells of the purple non sulfur bacterium Rhodobacter sphaeroides were coated with a polydopamine(PDA)nanoparticle layer via the self-polymerization of dopamine under anaerobic conditions.The treated cells show preserved light absorption of the photosynthetic pigments in the presence of dopamine concentrations ranging between 0.05–3.5 mM.The thickness and nanoparticle formation of the membrane-associated PDA matrix were further shown to vary with the dopamine concentrations in this range.Compared to uncoated cells,the encapsulated cells show up to a 20-fold enhancement in transient photocurrent measurements under mediatorless conditions.The biologically synthesized PDA can thus act as a matrix for electronically coupling the light-harvesting metabolisms of cells with conductive surfaces. 展开更多
关键词 BIOELECTRONICS photosynthetic bacteria purple bacteria electron transfer POLYDOPAMINE biophotovoltaics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部