We examine theoretically the performance of an Hg0.77Cd0.23Te based p-n photodetector/HFET optical receiver due to its possible application at 10.6 μm free space optical communication system at high bit rate.A rigoro...We examine theoretically the performance of an Hg0.77Cd0.23Te based p-n photodetector/HFET optical receiver due to its possible application at 10.6 μm free space optical communication system at high bit rate.A rigorous noise model of the receiver has been developed for this purpose.We calculate the total noise and sensitivity of the receiver.The front-end of the receiver exhibits a sensitivity of -45 dBm at a bit rate of 1 Gb/s and -30 dBm at a bit rate of 10 Gb/s,and the total mean-square noise curren t〈i2n〉=5×10-15 A2 at a bit rate of 1 Gb/s an d〈i2n〉 =10-12 A2 at a bit rate of 10 Gb/s,and a 3-dB bandwidth of 10 GHz.展开更多
文摘We examine theoretically the performance of an Hg0.77Cd0.23Te based p-n photodetector/HFET optical receiver due to its possible application at 10.6 μm free space optical communication system at high bit rate.A rigorous noise model of the receiver has been developed for this purpose.We calculate the total noise and sensitivity of the receiver.The front-end of the receiver exhibits a sensitivity of -45 dBm at a bit rate of 1 Gb/s and -30 dBm at a bit rate of 10 Gb/s,and the total mean-square noise curren t〈i2n〉=5×10-15 A2 at a bit rate of 1 Gb/s an d〈i2n〉 =10-12 A2 at a bit rate of 10 Gb/s,and a 3-dB bandwidth of 10 GHz.