期刊文献+
共找到35,498篇文章
< 1 2 250 >
每页显示 20 50 100
Advances in Wireless,Batteryless,Implantable Electronics for Real‑Time,Continuous Physiological Monitoring
1
作者 Hyeonseok Kim Bruno Rigo +2 位作者 Gabriella Wong Yoon Jae Lee Woon‑Hong Yeo 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期254-302,共49页
This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design co... This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses. 展开更多
关键词 Implantable electronics Biomedical systems Batteryless devices Wireless electronics physiological signal monitoring
下载PDF
Implantable Electrochemical Microsensors for In Vivo Monitoring of Animal Physiological Information
2
作者 Jin Zhou Shenghan Zhou +4 位作者 Peidi Fan Xunjia Li Yibin Ying Jianfeng Ping Yuxiang Pan 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期183-211,共29页
In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,... In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,implantable electrochemical microsensors have emerged as a prominent area of research.These microsensors not only fulfill the technical requirements for monitoring animal physiological information but also offer an ideal platform for integration.They have been extensively studied for their ability to monitor animal physiological information in a minimally invasive manner,characterized by their bloodless,painless features,and exceptional performance.The development of implantable electrochemical microsensors for in vivo monitoring of animal physiological information has witnessed significant scientific and technological advancements through dedicated efforts.This review commenced with a comprehensive discussion of the construction of microsensors,including the materials utilized and the methods employed for fabrication.Following this,we proceeded to explore the various implantation technologies employed for electrochemical microsensors.In addition,a comprehensive overview was provided of the various applications of implantable electrochemical microsensors,specifically in the monitoring of diseases and the investigation of disease mechanisms.Lastly,a concise conclusion was conducted on the recent advancements and significant obstacles pertaining to the practical implementation of implantable electrochemical microsensors. 展开更多
关键词 Electrochemical microsensors Implantable sensors In vivo monitoring Animal physiological information
下载PDF
Semi-implantable device based on multiplexed microfilament electrode cluster for continuous monitoring of physiological ions
3
作者 Shuang Huang Shantao Zheng +9 位作者 Mengyi He Chuanjie Yao Xinshuo Huang Zhengjie Liu Qiangqiang Ouyang Jing Liu Feifei Wu Hang Gao Xi Xie Hui-jiuan Chen 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期88-103,共16页
Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in bio... Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health. 展开更多
关键词 Multiplexed microfilament electrode cluster physiological ion sensing Subcutaneous and brain experiment Wearable platform for multi-ion detection Continuous real-time monitoring system
下载PDF
Physiological and Transcriptome Analysis Illuminates the Molecular Mechanisms of the Drought Resistance Improved by Alginate Oligosaccharides in Triticum aestivum L.
4
作者 Yunhong Zhang Yonghui Yang Jiawei Mao 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期185-212,共28页
Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with ... Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000.The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress.A total of 10,064 and 15,208 differentially expressed unigenes(DEGs)obtained from the AOS treatment and control samples at 24 and 72 h after dehydration,respectively,were mainly enriched in the biosynthesis of secondary metabolites(phenylpropanoid biosynthesis,flavonoid biosynthesis),carbohydrate metabolism(starch and sucrose metabolism,carbon fixation in photosynthetic organisms),lipid metabolism(fatty acid elongation,biosynthesis of unsaturated fatty acids,alpha-linolenic acid metabolism,cutin,suberine and wax biosynthesis),and signaling transduction pathways.The up-regulated genes were related to,for example,chlorophyll a-b binding protein,amylosynthease,phosphotransferase,peroxidase,phenylalanine ammonia lyase,flavone synthase,glutathione synthetase.Signaling molecules(including MAPK,plant hormones,H_(2)O_(2) and calcium)and transcription factors(mainly including NAC,MYB,MYB-related,WRKY,bZIP family members)were involved in the AOS-induced wheat drought resistance.The results obtained in this study help underpin the mechanisms of wheat drought resistance improved by AOS,and provides a theoretical basis for the application of AOS as an environmentally sustainable biological method to improve drought resistance in agriculture. 展开更多
关键词 Alginate oligosaccharides Triticum aestivum L. drought resistance TRANSCRIPTOMIC physiological analysis
下载PDF
Physiological Responses of Clam(Ruditapes philippinarum)to Transport Modes with Different Temperatures
5
作者 BI Shijie XUE Changhu +4 位作者 XU Lili WEN Yunqi WANG Lihao LI Zhaojie LIU Hongying 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期517-526,共10页
Given the increased circulation time after fishing,a series of changes take place in live clams,leading to a deterioration in quality even after death.Thus,in this study,we aimed to explore the optimal mode of transpo... Given the increased circulation time after fishing,a series of changes take place in live clams,leading to a deterioration in quality even after death.Thus,in this study,we aimed to explore the optimal mode of transportation of clams.The container for holding clams was reformed,and a water circulation temperature control system was established.The physiological responses of clams during anhydrous and watery transportation at two temperatures(4 and 15℃)were investigated based on the aforementioned system.When comparing the transportation patterns after 3 d of transport,a higher survival rate was observed at 4℃(97%)than at 15℃(63%)in the anhydrous transportation groups and a lower survival rate was observed at 4℃(93%)than at 15℃(99%)in the watery transportation groups.In addition,the glycogen content,condition index(CI),and adenylate energy charge(A.E.C)value were higher at4℃((40.87±0.99)mg g^(-1),13.71%±0.50%and 57.45%±1.60%)than at 15℃((30.54±0.81)mg g^(-1),9.09%±0.30%and 43.12%±1.65%)in the anhydrous transportation groups.In the watery transportation groups,a lower glycogen content,CI,and A.E.C.value were observed at 4℃((33.78±0.84)mg g^(-1),9.78%±0.50%and 64.65%±1.25%)than at 15℃((41.53±0.93)mg g^(-1),12.72%±0.83%and 71.58%±1.27%).Results from this study show that anhydrous transportation(4℃)is the optimal transport condition for clams to maintain a high quality and good physiological conditions.Thus,this study will be particularly useful for establishing shellfish transportation systems. 展开更多
关键词 watery transportation anhydrous transportation CLAM physiological response TEMPERATURE
下载PDF
Leaf thermal tolerance and sensitivity of temperate tree species are correlated with leaf physiological and functional drought resistance traits
6
作者 Ines Katharina Münchinger Peter Hajek +2 位作者 Berivan Akdogan Astor Torano Caicoya Norbert Kunert 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第1期63-76,共14页
Climate change is causing more frequent and severe climatic events,such as extreme heat and co-occurring drought,potentially accelerating tree mortality.Which tree species will cope better with those extreme events is... Climate change is causing more frequent and severe climatic events,such as extreme heat and co-occurring drought,potentially accelerating tree mortality.Which tree species will cope better with those extreme events is still being researched.This study focuses on heat as a physiological stress factor and interspecifi c variation of thermal tolerance and sensitivity traits in 15 temperate coniferous and broad-leaved tree species.We investigate(1)whether thermal tolerance and sensitivity traits correlate with a droughtrelated physiological trait,particularly the leaf turgor loss point(πtlp,wilting point),and(2)how thermal tolerance and sensitivity traits co-vary within diff erent tree-functional types classifi ed by morphological and physiological traits of the leaf,i.e.,leaf mass per area(LMA)and percentage loss of area(PLA).The study was carried out in the Traunstein Forest Dynamics Plot of the ForestGEO network in Germany.The temperature response of the maximum quantum yield of photosystem II(F_(v)/F_(m))on leaf discs was determined,from which various physiological leaf traits were estimated,one of which is the breaking point temperature(T_(5)),the temperature at which F_(v)/F_(m)declines by 5%.Additionally,the temperature of 50%(T_(50))and 95%(T_(95))decline in F_(v)/F_(m)was evaluated.The decline width between T_(50)and T 5(DW T_(50)−T_(5))was taken as an indicator of the species’thermal sensitivity.The breaking point temperature ranged from 35.4±3.0 to 47.9±3.9℃among the investigated tree species and T 50 ranged between 46.1±0.4 and 53.6±0.7℃.A large interspecifi c variation of thermal tolerance and sensitivity was found.European ash(Fraxinus excelsior L.)was the most heat-sensitive species,while Wild cherry(Prunus avium L.)was the least heat-sensitive species.Species with a more negativeπtlp tended to have a higher breaking point temperature than species with a less negativeπtlp.A lower thermal sensitivity characterized species with a higher LMA,and high PLA was found in species with low thermal sensitivity.Accordingly,species with thicker and tougher leaves have lower thermal sensitivity which coincides with a lower wilting point.We conclude that species that develop drought-adapted foliage can cope better with heat stress.Further,they might be able to maintain transpirational cooling during combined heat and drought stress,which could lessen their mortality risk during climatic extremes. 展开更多
关键词 Water stress Heat stress physiological limitations Climate change ForestGEO
下载PDF
Salt stress responses in foxtail millet:Physiological and molecular regulation
7
作者 Changai Wu Meng Zhang +2 位作者 Yifan Liang Lei Zhang Xianmin Diao 《The Crop Journal》 SCIE CSCD 2023年第4期1011-1021,共11页
Foxtail millet(Setaria italica L.),a member of the Paniceae family,is a temperate and tropical grass species that is widely cultivated on the Eurasian continent.It is Chinese in origin and possesses a small genome,sho... Foxtail millet(Setaria italica L.),a member of the Paniceae family,is a temperate and tropical grass species that is widely cultivated on the Eurasian continent.It is Chinese in origin and possesses a small genome,short growth cycle,and strong natural abiotic stress resistance.Elucidating the mechanism of millet tolerance to salt stress is becoming increasingly important with increasing soil salinization limiting crop productivity.The responses and mechanisms of tolerance to salt stress from other model plants such as Arabidopsis and rice,were compared with those from foxtail millet to summarize current research on responses to salt stress.Numerous processes are involved in these processes,including physiological reactions,sensing,signaling,and control at the transcriptional,post-transcriptional,and epigenetic levels.To increase crop productivity and agricultural sustainability,a variety of technologies can be used to investigate how salt tolerance is mediated by physiological and molecular processes in foxtail millet. 展开更多
关键词 Foxtail millet SALINITY physiological responses Molecular regulation Crop productivity
下载PDF
Rhizobacteria facilitate physiological and biochemical drought tolerance of Halimodendron halodendron (Pall.) Voss
8
作者 Mohammad Hossein TAGHIZADEH Mohammad FARZAM Jafar NABATI 《Journal of Arid Land》 SCIE CSCD 2023年第2期205-217,共13页
Growth-promoting bacteria(GPB)have shown promising effects on serving plants against environmental constraints such as drought.Nevertheless,simultaneous effects of different GPB have less been considered for arid land... Growth-promoting bacteria(GPB)have shown promising effects on serving plants against environmental constraints such as drought.Nevertheless,simultaneous effects of different GPB have less been considered for arid land plants and under field conditions.We investigated the effects of single and combined application of GPB,including free-living nitrogen-fixing bacteria(NFB),phosphate solubilizing bacteria(PSB),potassium solubilizing bacteria(KSB),a combination of NFB,PSB,and KSB(NPK),and control,at three drought stress treatments.In order to better understand the interactions between drought and GPB,we measured the morphological,biochemical,and physiological plant traits.The target plant was salt tree(Halimodendron Halodendron(Pall.)Voss),a legume shrub native to arid lands of Central and West Asia.All biofertilizer treatments enhanced the growth,physiology,and biochemistry of salt tree seedlings,and there were significant differences among the treatments.KSB and PSB treatments increased photosynthetic pigments,but KSB treatment was more efficient in transpiration rate and stomatal regulation and increased the soluble carbohydrates.PSB treatment had the highest effect on root traits,such as taproot length,root volume,cumulative root length,and the ratio of root to shoot.NFB treatment enhanced root diameter and induced biomass translocation between root systems.However,only the application of mixed biofertilizer(i.e.,NPK treatment)was the most significant treatment to improve all plant morphological and physiological characteristics of salt tree under drought stress.Therefore,our results provided improvement of some specific plant traits simultaneous with application of three biofertilizers to increase growth and establishment of salt tree seedlings in the degraded arid lands. 展开更多
关键词 growth-promoting bacteria physiological traits drought stress BIOFERTILIZER root traits Halimodendron Halodendron(Pall.)Voss
下载PDF
Transcriptomic and physiological analyses identifying Lanzhou lily(Lilium davidii var.unicolor)drought adaptation strategies
9
作者 Wenmei Li Yajun Wang +4 位作者 Heng Ren Zhihong Guo Na Li Chengzheng Zhao Zhongkui Xie 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第1期145-157,共13页
Drought stress is the main limiting plant growth factor in arid and semiarid regions.The Lanzhou lily(Lilium davidii var.unicolor)is the only sweet-tasting lily grown in these regions of China that offers highly edibl... Drought stress is the main limiting plant growth factor in arid and semiarid regions.The Lanzhou lily(Lilium davidii var.unicolor)is the only sweet-tasting lily grown in these regions of China that offers highly edible,medicinal,health,and ornamental value.The Tresor lily is an ornamental flower known for its strong resistance.Plants were grown under three different drought intensity treatments,namely,being watered at intervals of 5,15,and 25 d(either throughout the study or during specific growth stages).We measured the biomass,leaf area,photosynthetic response,chlorophyll content(SPAD value),and osmoregulation of both the Lanzhou lily and the Tresor lily(Lilium‘Tresor’).Additionally,we employed RNA sequencing(RNA-Seq)and qRT-PCR to investigate transcriptomic changes of the Lanzhou lily in response to drought stress.Results showed that under drought stress,the decreasing rate in the Lanzhou lily bulb weight was lower than the corresponding Tresor lily bulb rate;the net photosynthetic rate,transpiration rate,and stomatal conductance of the Lanzhou lily were all higher compared to the Tresor lily;osmoregulation constituents,such as glucose,fructose,sucrose,trehalose,and soluble sugar,in the Lanzhou lily were comparatively higher;PYL,NCED,and ERS genes were significantly expressed in the Lanzhou lily.Under moderate drought,the biosynthesis of flavonoids,circadian rhythms,and the tryptophan metabolism pathway of the Lanzhou lily were all significant.Under severe drought stress,fatty acid elongation,photosynthetic antenna protein,plant hormone signal transduction,flavone and flavonol biosynthesis,and the carotenoid biosynthesis pathway were all significant.The Lanzhou lily adapted to drought stress by coordinating its organs and the unique role of its bulb,regulating photosynthesis,increasing osmolyte content,activating circadian rhythms,signal transduction,fatty acid elongation metabolism,and phenylalanine and flavonoid metabolic pathways,which may collectively be the main adaptation strategy and mechanisms used by the Lanzhou lily under drought stress. 展开更多
关键词 Drought stress Adaptation strategy OSMOLYTES Lanzhou lily physiological characterization Transcription profiles
下载PDF
Psychological and Physiological Health Benefits of a Structured Forest Therapy Program for Children and Adolescents with Mental Health Disorders
10
作者 Namyun Kil Jin Gun Kim +1 位作者 Emily Thornton Amy Jeranek 《International Journal of Mental Health Promotion》 2023年第10期1117-1125,共9页
Mental health conditions in children and adolescents can be improved by slow mindful nature connection known as forest therapyor bathing.Forest therapy has recently received growing attention as an enabler of relaxati... Mental health conditions in children and adolescents can be improved by slow mindful nature connection known as forest therapyor bathing.Forest therapy has recently received growing attention as an enabler of relaxation and preventive health care withdemonstrated clinical efficacy.However,it is not well-known that forest therapy also decreases mental health issues amongindividuals with mental health disorders.This study explored the psychological and physiological health benefits of structuredforest therapy programs for children and adolescents with mental health disorders.A one-group pre-test-posttest design wasemployed for our study participants.Twelve participants(aged 9–14 years)engaged in two one-hour guided standard sequenceforest therapy experiences.A Mindful Attention Awareness Scale(MAAS),Connectedness to Nature Scale(CNS),Profile ofMood States(POMS),place meanings(e.g.,functional,emotional,and cognitive attachment to the forest)questionnaire,andphysiological health assessment were administered to the participants.Our results showed that negative mood states weresignificantly reduced and that a positive mood state was significantly improved after the structured forest therapy programs.Also,mindfulness,nature connection,place meanings,and physiological health were significantly boosted after theinterventions.The results demonstrate substantial psychological and physiological health and well-being outcomes ofstructured forest therapy for similar individuals. 展开更多
关键词 Forest therapy mental health disorders MINDFULNESS mood states place meanings physiological health
下载PDF
Effects of Antimony Stress on Root Growth,Antimony Accumulation and Physiological Characteristics of Ramie(Boehmeria nivea(L.) Gaudich.)
11
作者 Jiecheng HAN Yaxuan LIU +4 位作者 Xingguo ZHAN Jingyao LUO Fulong YANG Jing ZHOU Guiyuan MENG 《Agricultural Biotechnology》 CAS 2023年第1期8-11,15,共5页
[Objectives]This study was conducted to investigate the toxicity of heavy metal antimony(Sb) to ramie(Boehmeria nivea(L.) Gaudich.) and the tolerance response in ramie. [Methods] A pot experiment was conducted to stud... [Objectives]This study was conducted to investigate the toxicity of heavy metal antimony(Sb) to ramie(Boehmeria nivea(L.) Gaudich.) and the tolerance response in ramie. [Methods] A pot experiment was conducted to study the effects of Sb stress on root growth and Sb accumulation and transport of the root system of cultivated ramie Zhongzhu No.1, as well as on the physiological characteristics of ramie leaves. [Results] The plant height and root dry weight and volume of Zhongzhu No.1 showed an effect of "promoting at low concentrations and inhibiting at high concentrations" with the increase of Sb concentration, and decreased significantly at the concentration of 4 000 mg/kg, but no obvious toxic growth symptoms were observed. The content of Sb in roots(289.7-508.6 mg/kg) and the root-shoot transfer factor(0.09-0.57) of Zhongzhu No.1 increased with the increase of soil Sb concentration, but the change of Sb bioconcentration factor in roots was opposite, indicating that high concentrations of Sb in soil could promote the absorption of Sb in roots and the transport of Sb to the aboveground part, but the Sb enrichment capacity of roots was relatively reduced with the increase of soil Sb. Sb stress had a certain impact on the physiological characteristics of ramie leaves. With the increase of Sb treatment concentration, MDA, POD and SOD showed a change trend of "first increasing and then decreasing", while CAT gradually increased, indicating that Sb stress caused changes in the physiological characteristics of ramie leaves, thereby affecting plant growth and development. [Conclusions] This study provides a theoretical basis for ecological restoration of ramie in mining areas. 展开更多
关键词 ANTIMONY RAMIE Root growth Sb enrichment physiological characteristics
下载PDF
Seed Dormancy and Seedlings Physiological Response to Topramezone in Green Foxtail(Setaria viridis)
12
作者 Ding Wei Chang Xin-yue +1 位作者 Cheng Zhuo Cheng Peng 《Journal of Northeast Agricultural University(English Edition)》 2023年第4期32-42,共11页
Green foxtail(Setaria viridis)is a notorious weed in corn fields in Heilongjiang Province.To investigate the best method to break the seed dormancy of green foxtail and its physiological response to topramezone,this s... Green foxtail(Setaria viridis)is a notorious weed in corn fields in Heilongjiang Province.To investigate the best method to break the seed dormancy of green foxtail and its physiological response to topramezone,this study selected newly harvested and one-year stored green foxtail seeds as research subjects.The seeds were treated with HCl,Na OH,gibberellic acid(GA),different water temperatures and polyethylene glycol(PEG)to study the seed dormancy and drought resistance of green foxtail.The results showed that newly harvested seeds exhibited dormancy,and treatments with HCl,NaOH and different water temperatures were unable to break the dormancy.Soaking the seeds in GA could overcome dormancy,but the seeds failed to germinate when exposed to 25%PEG concentration.When topramezone was applied at rates of 22.5 and 45.0 g a.i.·hm^(-2)at the 3-leaf and 5-leaf stages,respectively,the chlorophyll content reached the lowest value at 28 days after treatment(DAT).At the 7-leaf stage,the chlorophyll content reached the lowest value at 7 DAT.The activity of 4-hydroxyphenylpy-ruvate dioxygenase(HPPD)enzyme after topramezone application reached the maximum value at 7 DAT for different leaf ages,and the higher the leaf age,the higher the HPPD activity,which was an important factor contributing to the resistance of green foxtail to topramezone. 展开更多
关键词 green foxtail seed dormancy topramezone physiological response
下载PDF
Operations of Knapsack Sprayer and Its Impacts on Physiological Parameters of Selected Operators
13
作者 Bukola Olanrewaju Afolabi Akinfoye Oyime Daniel Adejumo +1 位作者 Ayoade Oladele Atere Titus Adeyinka Ilori 《Engineering(科研)》 CAS 2023年第2期59-67,共9页
The study was aimed at determining the impacts of operating Manually Operated Hand Lever Knapsack Sprayers (MOHLKS) on physiological responses of the operators as dependent on anthropometric variations and sex. Twenty... The study was aimed at determining the impacts of operating Manually Operated Hand Lever Knapsack Sprayers (MOHLKS) on physiological responses of the operators as dependent on anthropometric variations and sex. Twenty eight subjects, (4 female, 24 male) Mean ± SD: Age 22.5 ± 1.92, 24.29 ± 2.2 years;Body Mass Index 24.6 ± 4.8, 21.7 ± 2.4 kg/m<sup>2</sup> were employed in the study. Selected anthropometric parameters of weight and height were used to determine body mass index (BMI), with these are arm-reach forward, elbow to fingertip, hand length and hand width were measured to establish human variations in diversity. Subjects undertook the operation at 5 replicates each, before and after which information about operators’ body pain locations and body physiological changes of heart rates were obtained. Measured parameters were used in the determination of expended energy (EE), physiological cost (PC), oxygen intake (VO<sub>2</sub>) and aerobic power (VO<sub>2</sub>max). Alongside with these were operational parameters of stroke, pace and time taken to get the operation done and environmental factors of temperature and relative humidity. The results revealed on the average that the BMI (24.61 ± 4.78 kg/m<sup>2</sup>) in female operators was higher, this corresponded to PC and VO<sub>2</sub>, while the VO<sub>2</sub>max (34.83 ± 3.30 ml/min/kg) in males is higher. More EE was obtained in female subjects (3.53 ± 3.76 kCal/min) as compared to male subjects (3.42 ± 7.48 kCal/min). The main effects plot of operational factors on EE displayed the stroke made by the subjects during spraying operation as parameter with largest effect on EE. Regression equation for EE and PCI is given as PCI = 1.97 + 25.2 EE, while the P-value at α = 0.05 is 0.000 and R<sup>2</sup> = 98.8%. Post operational body pain showed that 19 out of 28 subjects incurred at least one type of body pain, with shoulder pain as most frequent. The results of the study suggest that early incidence of fatigue may occur in female operators as compared to the males, and in addition, cumulative trauma at shoulder, back, and upper and lower arm may result over time. Hence, it is recommended that the tank volume should be reduced and the straps for the shoulders should be supported with additional cushion. 展开更多
关键词 Cumulativetrauma Knapsack Sprayer Operational Effect physiological Changes STROKE
下载PDF
Influence of Colletotrichum truncatum on the Physiological and Chemical Quality in Different Varieties of Soy Seed
14
作者 Lucas Pérez Laura Garay Farías +4 位作者 Oscar René Silvero Ever Maidana Alcides Villalba Gabriela Perdomo Patricia Rojas 《Agricultural Sciences》 2023年第10期1393-1404,共12页
The literature highlights that a severe infection by the fungus Colletotrichum truncatum may be capable of inflicting considerable damage to seeds after harvest, potentially affecting their chemical composition and ph... The literature highlights that a severe infection by the fungus Colletotrichum truncatum may be capable of inflicting considerable damage to seeds after harvest, potentially affecting their chemical composition and physiological quality. Taking into account that currently there is no categorization in terms of susceptibility and tolerance on this pathogen, the present work is presented with the main objective of “Evaluate the influence of Pathogenicity of C. truncatum on the physiological quality (germination, vigor, viability) and biochemical components in different varieties of soybean seeds (Glycine max)” most planted in the region. The work was carried out in the Agrotec laboratory, located in the Municipality of San Alberto (Alto Paraná), using a completely randomized experimental design, with AxB factorial arrangement, where A indicates ten most planted soybean varieties in the region and B with or without artificial inoculation of Colletotrichum truncatum, with twenty treatments and four repetitions. The variables evaluated were: germination, vigor, viability and chemical composition. The data were subjected to analysis of variance and the Tukey test at 5% error. The results showed a significant statistical difference, accepting the alternative hypothesis proposed “The pathogenicity of Colletotrichum truncatum influences the physiological quality (germination, vigor, viability) and biochemical components (saturated and unsaturated fatty acids) in different varieties of soybean seeds (Glycine max)”. 展开更多
关键词 Colletotrichum truncatum physiological Quality Chemical Composition Soybean Varieties (Glycine max)
下载PDF
Photosynthetic and water-related physiological characteristics of Periploca sepium in response to changing soil water conditions in a shell sand habitat
15
作者 Xiao Wang Jiangbao Xia +5 位作者 Ximei Zhao Mingming Dong Xianshuang Xing Ying Fang Qinqin Fu Zhaohua Lu 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第2期453-467,共15页
This study was performed to observe the effects of water on photosynthesis and water-related physiology in dominant shrubs in shell sand habitats.Four-year-old Periploca sepium seedlings were used as model species.A g... This study was performed to observe the effects of water on photosynthesis and water-related physiology in dominant shrubs in shell sand habitats.Four-year-old Periploca sepium seedlings were used as model species.A gradient of 12 water levels was established by artificially supplying the shell sand with water up to saturation and then allowing natural evapotranspiration to occur.The photo synthetic,chlorophyll fluorescence and stem sap flow parameters of P.sepium were measured under a range of water conditions.The different soil water conditions were classified according to the responses of these parameters.(1)With the increase in the relative water content(RWC)of the shell sand,the parameters of leaf photosynthesis,chlorophyll fluorescence and water-related physiology in P.sepium showed significant critical responses.The net photo synthetic rate(Pn),transpiration rate(Tr),instantaneous water use efficiency(WUE),potential water use efficiency(WUEi),maximum photochemical efficiency(Fv/Fm),actual photochemical efficiency(ΦPSII)and daily accumulation of stem sap flow all increased first and then decreased with increasing RWC,but the corresponding water conditions associated with their maximum values were not the same.An RWC of 69.40%was determined to be the optimal water condition for photosynthesis and water-related physiological activity in P.sepium.At an RWC of 36.61%,the mechanism of photosynthetic inhibition in P.sepium changed from stomatal limitation to nonstomatal limitation;this was also the minimum water requirement for maintaining normal photo synthetic processes.An RWC of 50.27%resulted in the highest WUE in P.sepium,indicating that moderate drought stress increased WUE.(2)Based on the quantitative relationship between the photo synthetic parameters of P.sepium and the shell sand water gradient,the soil water availability was classified into 6 water grades.The RWC range for maintaining strong photosynthesis and high WUE in P.sepium was 63.22-69.98%.(3)Gas exchange in P.sepium was inhibited under drought and waterlogging stresses.Under these conditions,the photosynthetic electron transport chain was blocked,and the dissipation of light energy as heat increased,which ultimately led to a decline in photo synthetic productivity;moreover,transpiration and dissipation were aggravated,and water transmission and utilization processes in P.sepium were hindered.A significant negative feedback regulation mechanism in the photosynthetic and water-related physiological processes of P.sepium was observed;this mechanism allowed P.sepium growing in shell sand to be highly adaptable to water stress. 展开更多
关键词 Water gradient range Periploca sepium Photosynthesis Water physiology Water availability classifi cation Shell sand
下载PDF
Physiological and Biochemical Mechanisms of Salinity Tolerance in Carex morrowii Boott
16
作者 Aysegul Akpinar 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第7期2197-2210,共14页
Carex species are widely used in many parts of the world and contain a large number of ecologically diverse species.Among the Carex species,some of them are known to be glycophytes,while others are halophytes.Carex mo... Carex species are widely used in many parts of the world and contain a large number of ecologically diverse species.Among the Carex species,some of them are known to be glycophytes,while others are halophytes.Carex morrowii Boott(Cyperaceae)is resistant to trample through their root structure and has an essential ornamental value in the landscape with their leaves.However,no information was found about the level of salinity tolerance/sensitivity of the Carex morrowii among these species.In the present study,changes in trace element contents(Na,K,Ca,Cu,Mn,Mg,Ni,Fe,P,Zn,and N)and their transport from roots to leaves,osmotic regulation,alterations in chlorophyll and carotenoid contents,nitrogen assimilation(nitrate reductase activity;NRA)and total soluble protein content in both roots and leaves of Carex morrowii under different salinity concentrations(50 mM,100 mM,200 mM and 300 mM NaCl)were examined in detail.Our study provides the first detailed data concerning the responses of leaves and roots and the determination of the level of salinity tolerance/sensitivity of the Carex morrowii.The K+/Na+ratio was preserved up to 200 mM NaCl,and accordingly,the element uptake and transport ratios showed that they could control moderate NaCl levels.Ca homeostasis that is maintained even in 200 mM NaCl concentration can be effective in maintaining the structural integrity and selective permeability of the cell membranes,while 300 mM NaCl concentration caused decreased photosynthetic pigments,and deterioration in element content and compartmentation.Moreover,these data suggest that plant parts of Carex morrowii respond differently against varied levels of salinity stress.Although the decrease in NR activity at 200 mM and 300 mM NaCl concentrations in the leaves,NR activity was maintained in the roots.Consequently,Carex morrowii is moderately tolerant to salinity and the carotenoid content and osmotic regulation of Carex morrowii appears to be instrumental in its survival at different salinity levels.Especially the roots of Carex morrowii have a remarkable role in salinity tolerance. 展开更多
关键词 SALINITY trace element uptake nitrogen assimilation plant physiology Carex morrowii
下载PDF
Inventory of the Thermo-Physiological Behavior of Fabrics—A Review
17
作者 Nicole Mölders 《Journal of Textile Science and Technology》 2023年第2期127-150,共24页
A comprehensive literature review was performed to create an inventory of thermal-physiological quantities for fabrics from different fiber materials, material blends, and fabric structures. The goal was to derive ove... A comprehensive literature review was performed to create an inventory of thermal-physiological quantities for fabrics from different fiber materials, material blends, and fabric structures. The goal was to derive over-arching concepts that cannot be seen by the individual studies alone. Equations of best fits suggest non-linear changes for fabric thickness, thermal and water-vapor resistance with changes in material blend ratio. Air permeability decreases with increasing fabric density and fabric weight wherein the degree of decrease differs among fabric materials, blend ratio, and fabric structure. Water-vapor transmission rates strongly depend on fabric thickness, material, and blend, but marginally depend on fabric structure as long as the fabric and material thickness remain the same. 展开更多
关键词 Thermal Resistance of Fabrics Thermal Conductivity of Fabrics Water-Vapor Resistance of Fabrics Water-Vapor Transmission Rate Inventory of Thermal-physiological Characteristics of Fabrics Energetics of Fabrics
下载PDF
Spectroscopic Measurements of Physiological Elements in Microdialysis Samples from Rat Brain,Flowering Plum Fruit and Pea 被引量:8
18
作者 Hut Min MA Zhi Hua WANG +2 位作者 Yi ZENG Hut Wan HAN Guo Quan LIU(Institute of Chemistry,Chinese Academy of Sciences,Beijing 100080) 《Chinese Chemical Letters》 SCIE CAS CSCD 1999年第3期243-246,共4页
IntroductionMicrodialysisisanimportantbioanalyticalsamplingtechnique,whichinvolvestheimplantationofasmallprobeofsemipermeablemembraneintothesubjecttobestudiedl.Themethodisminimallyinvasiveandverysuitableforstudyingpar... IntroductionMicrodialysisisanimportantbioanalyticalsamplingtechnique,whichinvolvestheimplantationofasmallprobeofsemipermeablemembraneintothesubjecttobestudiedl.Themethodisminimallyinvasiveandverysuitableforstudyingparameterssuchasphysiologicalelement... 展开更多
关键词 MICRODIALYSIS spectroscopic methods physiological element analysis Calcium Magnesium copper
下载PDF
Physiological and molecular responses to cold stress in rapeseed(Brassica napus L.) 被引量:6
19
作者 YAN Lei Tariq Shah +3 位作者 CHENG Yong Lü Yan ZHANG Xue-kun ZOU Xi-ling 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第12期2742-2752,共11页
Low temperature is one of the most important abiotic factors inhibiting growth, productivity, and distribution of rapeseed(Brassica napus L.). Therefore, it is important to identify and cultivate cold-tolerant germpla... Low temperature is one of the most important abiotic factors inhibiting growth, productivity, and distribution of rapeseed(Brassica napus L.). Therefore, it is important to identify and cultivate cold-tolerant germplasm. The objective of this study was to figure out the mechanism of chilling(4 and 2°C) and freezing(–2 and –4°C) stresses along with a control(22°C) in B. napus cultivars(1801 and C20) under controlled environment(growth chamber). The experiment was arranged in a complete randomized design with three replications. Our results exhibited that under chilling and freezing stresses, the increment of proline accumulation, soluble sugar and protein contents, and antioxidant enzyme activity were enhanced more in 1801 cultivar compared with C20 cultivar. At –2 and –4°C, the seedlings of C20 cultivar died completely compared with 1801 cultivar. Hydrogen peroxide(H2 O2) and malondialdehyde contents(MDA) increased in both cultivars, but when the temperature was decreased up to –2 and –4°C, the MDA and H2 O2 contents continuously dropped in 1801 cultivar. Moreover, we found that leaf abscisic acid(ABA) was enhanced in 1801 cultivar under chilling and freezing stresses. Additionally, the transcriptional regulations of cold-tolerant genes(COLD1, CBF4, COR6.6, COR15, and COR25) were also determined using real-time quantitative PCR(RT-q PCR). RT-q PCR showed that higher expression of these genes were found in 1801 as compared to C20 under cold stress(chilling and freezing stresses). Therefore, it is concluded from this experiment that 1801 cultivar has a higher ability to respond to cold stress(chilling and freezing stresses) by maintaining hormonal, antioxidative, and osmotic activity along with gene transcription process than C20. The result of this study will provide a solid foundation for understanding physiological and molecular mechanisms of cold stress signaling in rapeseed(B. napus). 展开更多
关键词 BRASSICA NAPUS L. cold stress MORPHOLOGICAL features molecular regulation physiological INDICATORS
下载PDF
Early Warning of Acute Altitude Sickness by Physiological Variables and Noninvasive Cardiovascular Indicators 被引量:8
20
作者 Zongbin Li Chunwei Liu +5 位作者 Jun Guo Yajun Shi Yang Li Jinli Wang Jing Wang Yundai Chen 《Chinese Medical Sciences Journal》 CAS CSCD 2020年第1期13-19,共7页
Objective To examine if the variations at sea level would be able to predict subsequent susceptibility to acute altitude sickness in subjects upon a rapid ascent to high altitude.Methods One hundred and six Han nation... Objective To examine if the variations at sea level would be able to predict subsequent susceptibility to acute altitude sickness in subjects upon a rapid ascent to high altitude.Methods One hundred and six Han nationality male individuals were recruited to this research.Dynamic electrocardiogram,treadmill exercise test,echocardiography,routine blood examination and biochemical analysis were performed when subjects at sea level and entering the plateau respectively.Then multiple regression analysis was performed to construct a multiple linear regression equation using the Lake Louise Score as dependent variable to predict the risk factors at sea level related to acute mountain sickness(AMS).Results Approximately 49.05%of the individuals developed AMS.The tricuspid annular plane systolic excursion(22.0+2.66 vs.23.2+3.19 mm,t=l.998,P=0.048)was significantly lower in the AMS group at sea level,while count of eosinophil[(0.264+0.393)×109/L vs.(0.126+0.084)×109/L,t=-2.040,P—0.045],percentage of diflerences exceeding 50 ms between adjacent normal number of intervals(PNN50,9.66%±5.40%vs.6.98%±5.66%,t=-2.229,P=0.028)and heart rate variability triangle index(57.1+16.1 vs.50.6+12.7,t=-2.271,P=0.025)were significantly higher.After acute exposure to high altitude,C-reactive protein(0.098+0.103 vs.0.062+0.045 g/L,t=-2.132,P=0.037),aspartate aminotransferase(19.7+6.7275.17,3±3.95 U/L,t=-2.231,P=0.028)and creatinine(85.1±12.9 vs.77.7±11.2 mmol/L,t=3.162,P=0.002)were significantly higher in the AMS group,while alkaline phosphatase(71.7+18.2 vs.80.6+20.2 U/L,t=2.389,P=0.019),standard deviation of normal-to-normal RR intervals(126.5+35.9 vs.143.3+36.4 ms,t—2.320,P—0.022),ejection time(276.9+50.8 vs.313.8+48.9 ms,t—3.641,P—0.001)and heart rate variability triangle index(37.1+12.9 vs.41.9+11.1,t=2.O2O,P=0.047)were significantly lower.Using the Lake Louise Score as the dependent variable,prediction equation were established to estimate AMS:Lake Louise Score=3.783+0.281Xeosinophil-0.219Xalkaline phosphatase+O.O32XPNN50.Conclusions We elucidated the differences of pl^siological variables as well as noninvasive cardiovascular indicators for subjects after high altitude exposure compared with those at sea level.We also created an acute high altitude reaction early warning equation based on the physiological variables and noninvasive cardiovascular indicators at sea level. 展开更多
关键词 ACUTE ALTITUDE sickness physiological VARIABLES NONINVASIVE CARDIOVASCULAR indicators ACUTE high ALTITUDE exposure early warning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部