期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of 1-aminobenzotriazole on the growth and physiological characteristics of Tamarix chinensis cuttings under salt stress 被引量:1
1
作者 Jia Sun Jiangbao Xia +3 位作者 Ximei Zhao Li Su Chuanrong Li Ping Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第4期1641-1651,共11页
vegetation restoration is a main ecological remediation technology for greening saline and alkaline soils.The objectives of this study were to determine the effect of1-aminobenzotriazole(ABT-1) on the growth and physi... vegetation restoration is a main ecological remediation technology for greening saline and alkaline soils.The objectives of this study were to determine the effect of1-aminobenzotriazole(ABT-1) on the growth and physiology of Tamarix chinensis under salt stress and to determine a suitable ABT-1 concentration and soil salinity(Sc) for propagating T.chihehsis-cuttings.Cuttings were soaked in water and ABT-1 solutions at three concentrations(50,100,and 200 mg L^(-1)) and propagated in pots containing four soil salinity levels,mild(0.3%),moderate(0.6%),and severe(0.9% and 1.2%),and compared with a control.The cuttings were measured to determine growth indices and physiological and biochemical indices(e.g.,chlorophyll content,superoxide dismutase activity,peroxidase activity,and malondialdehyde content).ABT-1 was effective in improving survival,growth,and physiological processes of cuttings under salt stress.However,there was a threshold effect when using ABT-1 to facilitate propagation under salt stress.ABT-1 effects were insignificant when applied at low concentrations(<100 mg L^(-1)).At a high concentration(> 100 mg L^(-1)),ABT-1 limited growth and physiological activities.Under a salt stress level(Sc ≤0.9%),ABT applied at a 100 mg L^(-1)concentration increased chlorophyll content and superoxide dismutase and peroxidase activities in the leaves and reduced malondialdehyde accumulation and membrane lipid peroxidation effects.As a result,ABT-1 enhanced the resistance of T.chinensis to salt stress.However,under high salt stress(>0.9%) and ABT-1 concentration(> 100 mg L^(-1)),the physiological regulatory ability of T.chinensis seedlings weakened.T.chinensis grew well at a salt stress ≤0.9% and ABT ≤100 mg L^(-1) and exhibited relatively high physiological regulatory ability and high salt adaptability. 展开更多
关键词 Salt stress Rooting powder GROWTH physiological and biochemical indices Tamarix chinensis
下载PDF
Effects of Low-temperature and Herbicide on Membrane Stability, Antioxidant Capacity, and Product of Metabolism in Barley Seedlings
2
作者 Kong Zhi-you Qin Peng +2 位作者 Liu Ye-ju Chen Jia Wang Shuo 《Journal of Northeast Agricultural University(English Edition)》 CAS 2013年第1期14-20,共7页
In order to investigate the physiological injury of barley caused by the low temperature after herbicides, tillering barley seedlings planted in plastic cups were pretreated in illumination incubator at 15℃ and 12 h-... In order to investigate the physiological injury of barley caused by the low temperature after herbicides, tillering barley seedlings planted in plastic cups were pretreated in illumination incubator at 15℃ and 12 h-light per day for 7 days, and then subjected to herbicide treatment, prometryn (with the concentrations of 0, 0.15%, 0.30%, and 0.45%) or isoproturon (with the concentrations of 0, 0.30%, 0.60%, and 0.90%), and the SOD activity, the CAT activity, the POD activity, the MDA content, proline content, soluble protein content, electrical conductivity, and the rate of O2-were determined and analyzed. The results showed that the low-temperature was the most important, and the treatment-time of low-temperature was another significant influencing factor on the physiological and biochemical indices of barley seedlings. However, all of the physiological and biochemical indices determined were not affected by the kinds of herbicides and herbicide concentrations, and the SOD was stable and should play the more prominent role on extracting of free radicals according to the stepwise regression and correlation. The herbicide concentrations should be increased in the future research for truly reflecting the effects of the herbicide concentration on the physiological and biochemical indices of barley seedlings. 展开更多
关键词 barley seedling low temperature HERBICIDE physiological and biochemical indices
下载PDF
Brassinosteroids Mediate Endogenous Phytohormone Metabolism to Alleviate High Temperature Injury at Panicle Initiation Stage in Rice 被引量:1
3
作者 CHEN Yanhua WANG Yaliang +5 位作者 CHEN Huizhe XIANG Jing ZHANG Yikai WANG Zhigang ZHU Defeng ZHANG Yuping 《Rice science》 SCIE CSCD 2023年第1期70-86,共17页
High temperatures cause physiological and biochemical changes and significantly affect young panicle development of rice(Oryza sativa L.).Brassinosteroids play important roles in enhancing crop stress resistance.In th... High temperatures cause physiological and biochemical changes and significantly affect young panicle development of rice(Oryza sativa L.).Brassinosteroids play important roles in enhancing crop stress resistance.In this study,we subjected rice cultivars Huanghuazhan(heat-resistant)and IR36(heat-sensitive)to high temperature(HT,40 oC)or normal temperature(NT,33 oC)for 7 d at the panicle initiation stage,in conjunction with application of 24-epibrassinolide[EBR,a synthetic brassinolide(BR)]or brassinazole(BRZ,a BR biosynthesis inhibitor)at the beginning of the treatments.HT exacerbated spikelet degeneration and inhibited young panicle growth,which were partially prevented by EBR application,while BRZ application aggravated the reduction in spikelet number.HT decreased the contents of BR,active cytokinins(aCTK),active gibberellins(aGA)and indole-3-acetic acid(IAA),but increased the content of abscisic acid(ABA)in young panicles.The activities of key enzymes involved in sucrose hydrolysis,glycolysis and the tricarboxylic acid cycle in young panicles were decreased with the change of endogenous hormone levels under HT.In addition,the contents of H2O2 and malondialdehyde(MDA)were increased and the activities of antioxidant enzymes were decreased in young panicles.Exogenous application of EBR induced the expression of phytohormone biosynthesis-related genes and down-regulated the expression of phytohormone catabolism-related genes to increase the contents of endogenous BR,aCTK,aGA and ABA,thus promoting the decomposition and utilization of sucrose in young panicles,enhancing the activities of superoxide dismutase,catalase and peroxidase,and reducing the accumulation of H2O2 and MDA in young panicles,whereas application of BRZ had the opposite physiological effects.These results showed that brassinosteroids mediate endogenous phytohormone metabolism to alleviate HT injury at the panicle initiation stage in rice. 展开更多
关键词 RICE high temperature panicle initiation stage phytohormone metabolism physiological and biochemical indices
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部