The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO\+-\-3\|N and effective ...The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO\+-\-3\|N and effective phosphorus (EP) in ponds; (2) the changes of COD were not evident, just effective in later period after PSB application; (3) PSB application could decrease the contents of NH\+-\-4\|N (NH\-3\|N), NO\+-\-2\|N ; (4) PSB application could improve the structure of the effective nitrogen (EN) and EP, stimulate the growth of phytoplankton, and increase primary productivity, and finally increase the commercial profits of ponds because of the increase of EP and the decrease of EN contents; (5) the effect exerting speed of PSB was slower, but the effect sustaining time was longer; (6) the appropriate concentration of PSB application in saline alkali wetland ponds was 10×10 -6 mg/L, one time effective period was more than 15 days. So PSB was an efficient water quality improver in saline alkali ponds.展开更多
The effluent from the pulping of E. urophylla by alkali sodium sulfite chemi mechanical process(AS-CMP) was characterized for its biodegradability by photosynthetic bacteria (PSB). Chemical coagulation post treat...The effluent from the pulping of E. urophylla by alkali sodium sulfite chemi mechanical process(AS-CMP) was characterized for its biodegradability by photosynthetic bacteria (PSB). Chemical coagulation post treatment of biotreated wastewater was also studied. One month continuous treatment in the laboratory indicated that the COD Cr , BOD 5 and SS removals in biotreatment stages reached 56%, 83% and 89% respectively, and the CH 2Cl 2 extractives decreased from 10.7 mg/L to 7.7 mg/L. In chemical coagulation post treatment stage, the effects of process conditions, such as coagulant dosage, pH value and the coordinated coagulation flocculation treatment of three kinds of coagulants on coagulation effectiveness were discussed. The optimum operating conditions were given.展开更多
An experiment was carried out for identification and determination of malathion degrading phosphate solubilizing bacteria isolated from the agricultural fields. In this study, malathion degrading phosphate solubilizin...An experiment was carried out for identification and determination of malathion degrading phosphate solubilizing bacteria isolated from the agricultural fields. In this study, malathion degrading phosphate solubilizing bacteria were identified using NBRIP (National Botanical Research Institute’s phosphate growth medium) media. A number of bacterial colonies were screened from agricultural fields. From primarily screened colonies 4 isolates were identified as phosphate solubilizing bacteria through qualitative and quantitative analysis. The isolated 4 bacterial colonies were inoculated in NBRIP broth media enriched with malathion pesticides to observe degradation of malathion pesticide under incubation study at three different temperatures (25°C, 30°C and 37°C). However, all the four isolates showed capability in degrading malathion pesticide. The study clearly revealed that phosphate solubilizing bacteria can be used in bioremediation of environmental pollution caused by malathion pesticide.展开更多
文摘The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO\+-\-3\|N and effective phosphorus (EP) in ponds; (2) the changes of COD were not evident, just effective in later period after PSB application; (3) PSB application could decrease the contents of NH\+-\-4\|N (NH\-3\|N), NO\+-\-2\|N ; (4) PSB application could improve the structure of the effective nitrogen (EN) and EP, stimulate the growth of phytoplankton, and increase primary productivity, and finally increase the commercial profits of ponds because of the increase of EP and the decrease of EN contents; (5) the effect exerting speed of PSB was slower, but the effect sustaining time was longer; (6) the appropriate concentration of PSB application in saline alkali wetland ponds was 10×10 -6 mg/L, one time effective period was more than 15 days. So PSB was an efficient water quality improver in saline alkali ponds.
文摘The effluent from the pulping of E. urophylla by alkali sodium sulfite chemi mechanical process(AS-CMP) was characterized for its biodegradability by photosynthetic bacteria (PSB). Chemical coagulation post treatment of biotreated wastewater was also studied. One month continuous treatment in the laboratory indicated that the COD Cr , BOD 5 and SS removals in biotreatment stages reached 56%, 83% and 89% respectively, and the CH 2Cl 2 extractives decreased from 10.7 mg/L to 7.7 mg/L. In chemical coagulation post treatment stage, the effects of process conditions, such as coagulant dosage, pH value and the coordinated coagulation flocculation treatment of three kinds of coagulants on coagulation effectiveness were discussed. The optimum operating conditions were given.
文摘An experiment was carried out for identification and determination of malathion degrading phosphate solubilizing bacteria isolated from the agricultural fields. In this study, malathion degrading phosphate solubilizing bacteria were identified using NBRIP (National Botanical Research Institute’s phosphate growth medium) media. A number of bacterial colonies were screened from agricultural fields. From primarily screened colonies 4 isolates were identified as phosphate solubilizing bacteria through qualitative and quantitative analysis. The isolated 4 bacterial colonies were inoculated in NBRIP broth media enriched with malathion pesticides to observe degradation of malathion pesticide under incubation study at three different temperatures (25°C, 30°C and 37°C). However, all the four isolates showed capability in degrading malathion pesticide. The study clearly revealed that phosphate solubilizing bacteria can be used in bioremediation of environmental pollution caused by malathion pesticide.