期刊文献+
共找到59,314篇文章
< 1 2 250 >
每页显示 20 50 100
Fiber optic monitoring of an anti-slide pile in a retrogressive landslide
1
作者 Lei Zhang Honghu Zhu +1 位作者 Heming Han Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期333-343,共11页
Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods... Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions. 展开更多
关键词 Anti-slide pile Multi-sliding surface pile-soil interface Brillouin optical time domain reflectometry (BOTDR) Geotechnical monitoring Reservoir landslide
下载PDF
Pile foundation in alternate layered liquefiable and non-liquefiable soil deposits subjected to earthquake loading
2
作者 Praveen Huded M Suresh R Dash 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期359-376,共18页
Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile found... Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile foundations in liquefiable soils has primarily focused on the pile foundation behavior in two or three-layered soil profiles.However,in natural occurrence,it may occur in alternative layers of liquefiable and non-liquefiable soil.However,the experimental and/or numerical studies on the layered effect on pile foundations have not been widely addressed in the literature.Most of the design codes across the world do not explicitly mention the effect of sandwiched non-liquefiable soil layers on the pile response.In the present study,the behavior of an end-bearing pile in layered liquefiable and non-liquefiable soil deposit is studied numerically.This study found that the kinematic bending moment is higher and governs the design when the effect of the sandwiched non-liquefied layer is considered in the analysis as opposed to when its effect is ignored.Therefore,ignoring the effect of the sandwiched non-liquefied layer in a liquefiable soil deposit might be a nonconservative design approach. 展开更多
关键词 pile foundation LIQUEFACTION alternately layered soil fixity effect layered effect
下载PDF
Longitudinal vibration characteristics of a tapered pipe pile considering the vertical support of surrounding soil and construction disturbance
3
作者 Li Zhenya Pan Yunchao +2 位作者 He Xianbin Lv Chong Mohammad Towhid 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期51-63,共13页
This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into f... This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile. 展开更多
关键词 tapered pipe pile longitudinal vibration vertical support of the surrounding soil construction disturbance displacement impedance
下载PDF
Effects of cement-enhanced soil on the ultimate lateral resistance of composite pile in clayey soil
4
作者 Zhijun Yang Kexin Chen +1 位作者 Xudong Fu Zhiyan Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期183-191,共9页
The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral re... The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral resistance has not been fully investigated.In this paper,the ultimate lateral resistance of the composite pile was studied by finite element limit analysis(FELA)and theoretical upper-bound analysis.The results of FELA and theoretical analysis revealed three failure modes of laterally loaded composite piles.The effects of the enhanced soil thickness,strength,and pile-enhanced soil interface characteristics on the ultimate lateral resistance were studied.The results show that increasing the enhanced soil thickness leads to a significant improvement on ultimate lateral resistance factor(N P),and there is a critical thickness beyond which the thickness no longer affects the N P.Increasing the enhanced soil strength induced 6.2%-232.6%increase of N P.However,no noticeable impact was detected when the enhanced soil strength was eight times higher than that of the natural soil.The maximum increment of N P is only 30.5%caused by the increase of interface adhesion factor(a).An empirical model was developed to calculate the N P of the composite pile,and the results show excellent agreement with the analytical results. 展开更多
关键词 Composite pile Ultimate soil resistance Finite element limit analysis(FELA) Plasticity theory Failure mode
下载PDF
Innovative Techniques Unveiled in Advanced Sheet Pile Curtain Design
5
作者 Peace Sèna Hounkpe Guy Oyéniran Adéoti +1 位作者 Patrick Oniakitan Mondoté Éric Adéchina Alamou 《Open Journal of Civil Engineering》 2024年第1期1-37,共37页
This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equi... This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equilibrium Methods (LEM) and Soil-Structure Interaction Methods (SSIM). While LEM methods, grounded in classical principles, provide valuable insights for preliminary design considerations, they may encounter limitations in addressing real-world complexities. In contrast, SSIM methods, including the SSI-SR approach, introduce precision and depth to the field. By employing numerical techniques such as Finite Element (FE) and Finite Difference (FD) analyses, these methods enable engineers to navigate the dynamics of soil-structure interaction. The exploration extends to SSI-FE, highlighting its essential role in civil engineering. By integrating Finite Element analysis with considerations for soil-structure interaction, the SSI-FE method offers a holistic understanding of how structures dynamically interact with their geotechnical environment. Throughout this exploration, the study dissects critical components governing SSIM methods, providing engineers with tools to navigate the intricate landscape of geotechnical design. The study acknowledges the significance of the Mohr-Coulomb constitutive model while recognizing its limitations, and guiding practitioners toward informed decision-making in geotechnical analyses. As the article concludes, it underscores the importance of continuous learning and innovation for the future of geotechnical engineering. With advancing technology and an evolving understanding of soil-structure interaction, the study remains committed to ensuring the safety, stability, and efficiency of geotechnical structures through cutting-edge design and analysis techniques. 展开更多
关键词 Sheet pile Curtain Design Soil-Structure Interaction Geotechnical Engineering Advanced Design Techniques Finite Element Analysis Innovative Geotechnical Methods
下载PDF
Advanced Sheet Pile Curtain Design: Case Study of Cotonou East Corniche
6
作者 Peace Sèna Hounkpe Guy Oyéniran Adéoti +1 位作者 Patrick Oniakitan Mondoté Éric Adéchina Alamou 《Open Journal of Civil Engineering》 2024年第1期38-64,共27页
This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient... This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient construction practices. The paper explores two fundamental approaches to sheet pile design: limit equilibrium methods and numerical techniques, with a particular focus on finite element analysis. Utilizing the robust PLAXIS 2016 calculation code based on the finite element method and employing a simplified elastoplastic model (Mohr-Coulomb), this study meticulously models the interaction between sheet pile walls and surrounding soil. The research offers valuable insights into settlement and deformation patterns that adjacent buildings may experience during various construction phases. The central objective of this paper is to present the study’s findings and recommend potential mitigation measures for settlement effects on nearby structures. By unraveling the intricate interplay between sheet pile wall construction and neighboring buildings, the paper equips engineers and practitioners to make informed decisions that ensure the safety and integrity of the built environment. In the context of the Cotonou East Corniche development, the study addresses the limitations of existing software, such as RIDO, in predicting settlements and deformations affecting nearby buildings due to the substantial load supported by sheet pile walls. This information gap necessitates a comprehensive study to assess potential impacts on adjacent structures and propose suitable mitigation measures. The research underscores the intricate dynamics between sheet pile wall construction and its influence on the local environment. It emphasizes the critical importance of proactive engineering and vigilant monitoring in managing and mitigating potential hazards to nearby buildings. To mitigate these risks, the paper recommends measures such as deep foundations, ground improvement techniques, and retrofitting. The findings presented in this study contribute significantly to the field of civil engineering and offer invaluable insights into the multifaceted dynamics of construction-induced settlement. The study underscores the importance of continuous evaluation and coordination between construction teams and building owners to effectively manage the impacts of sheet pile wall construction on adjacent structures. 展开更多
关键词 Sheet pile Walls and Structural Analysis Soil-Structure Interaction Modeling Structural Sustainability Cotonou East Corniche Sustainable Construction Plaxis Calculation Code Settlement Mitigation
下载PDF
NLR、PILE评分与PD-1抑制剂治疗晚期非小细胞肺癌的疗效及预后的相关性
7
作者 尹华婕 曾腾达 +3 位作者 吴旭 伍妮 周玲 刘新福 《邵阳学院学报(自然科学版)》 2024年第2期103-109,共7页
目的 探讨中性粒细胞-淋巴细胞比值(neutrophil to lymphocyte ratio, NLR)、PILE评分与程序性细胞死亡蛋白-1(programmed cell death protein 1, PD-1)抑制剂治疗的晚期非小细胞肺癌(non-small cell lung cancer, NSCLC)患者疗效及预... 目的 探讨中性粒细胞-淋巴细胞比值(neutrophil to lymphocyte ratio, NLR)、PILE评分与程序性细胞死亡蛋白-1(programmed cell death protein 1, PD-1)抑制剂治疗的晚期非小细胞肺癌(non-small cell lung cancer, NSCLC)患者疗效及预后的关系。方法 回顾性分析邵阳市中心医院在2020年6月至2021年12月收治的使用PD-1抑制剂治疗的109例晚期NSCLC患者的资料,计算患者治疗前的NLR、PILE评分,分析其与疗效及预后的相关性。结果 低NLR组比高NLR组有更高的疾病控制率(disease control rate, DCR)(P<0.05),PILE评分低分组较PILE评分高分组有更高的客观缓解率(objective response rate, ORR)和DCR(均P<0.05)。在多因素分析中,NLR、PILE评分是影响PFS的独立危险因素(均P<0.05)。结论 高NLR、高PILE评分与PD-1抑制剂治疗的晚期NSCLC患者的疗效更差有关,且高NLR、高PILE评分是患者预后不良的独立危险因素。 展开更多
关键词 晚期非小细胞肺癌 PD-1抑制剂 NLR pile评分
下载PDF
Pile Running in Layered Soils
8
作者 ZHAO Huan WANG Le +3 位作者 SUN Li-qiang TIAN Ying-hui Oliver REUL CHEN Quan-zhen 《China Ocean Engineering》 SCIE EI CSCD 2023年第5期829-841,共13页
This paper presents a case study on incidents of offshore pile running in layered soils.The study provides a detailed description of the seabed soil data,pile driving records,and field surveillance video observations.... This paper presents a case study on incidents of offshore pile running in layered soils.The study provides a detailed description of the seabed soil data,pile driving records,and field surveillance video observations.Three-dimensional large deformation finite element(LDFE)analyses were conducted to retrospectively analyze the incidents,considering the remoulding of seabed soil and degradation of the pile-soil interface in the LDFE modeling.By comparing the field observations with the LDFE analysis,the mechanism of pile running was discussed,with a focus on investigating the pile penetration resistance in each layer.The study revealed that pile running in layered soils primarily resulted from a significant reduction in pile base resistance when transitioning from a strong layer to an adjacent weak layer.To further investigate the pile running mechanism in layered soils,a parametric study on the strength variation of adjacent soil layers and its influence on pile base resistance was conducted.Lastly,a simplified prediction model of pile base resistance,suitable for assessing the risk of pile running in layered soils,was proposed. 展开更多
关键词 pile running coupled Eulerian−Lagrangian method layered soil penetration resistance pile−soil interaction
下载PDF
Thermal integrity profiling of cast-in-situ piles in sand using fiber-optic distributed temperature sensing
9
作者 Jing Wang Honghu Zhu +4 位作者 Daoyuan Tan Zili Li Jie Li Chao Wei Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3244-3255,共12页
Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature ... Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications. 展开更多
关键词 Geotechnical monitoring Distributed temperature sensing(DTS) pile defect Fiber-optic thermal integrity profiling(FO-TIP) Heat transfer pile‒soil interface
下载PDF
Field Test Study on Cantilever Circular Occluded Pile Supporting Structure
10
作者 Yong Deng Hongyang Xie +2 位作者 Yunxue Ye Shengcai Xu Yiwen Dai 《Journal of Applied Mathematics and Physics》 2023年第3期679-685,共7页
In order to explore the deformation of the pile body of the circular occluded pile retaining structure under earth pressure, this paper carries out on-site monitoring in combination with the actual project, and obtain... In order to explore the deformation of the pile body of the circular occluded pile retaining structure under earth pressure, this paper carries out on-site monitoring in combination with the actual project, and obtains the deformation characteristics and change rules of the occluded pile by measuring the strain and displacement of the pile body. The research conclusion can provide a certain reference value for the pile body design of bite pile in similar projects. 展开更多
关键词 Bite pile on Site Monitoring Deformation Characteristics pile Shaft Design
下载PDF
基于Pile单元改进模型的锚杆锚固角度效应数值模拟研究
11
作者 左海峰 蒋宇静 +6 位作者 李春平 刘光饶 张孙豪 管彦太 栾恒杰 刘建荣 李鑫鹏 《山东科技大学学报(自然科学版)》 CAS 北大核心 2023年第5期30-39,共10页
为探究锚杆在不同锚固角度下的受力特征和作用机制,采用Pile单元改进模型建立具有不同锚固角度的锚固结构面数值模型,并开展一系列的单轴压缩数值试验,对锚杆的锚固角度效应进行了系统研究。结果表明:当锚固角较大时,锚固结构面试件加... 为探究锚杆在不同锚固角度下的受力特征和作用机制,采用Pile单元改进模型建立具有不同锚固角度的锚固结构面数值模型,并开展一系列的单轴压缩数值试验,对锚杆的锚固角度效应进行了系统研究。结果表明:当锚固角较大时,锚固结构面试件加载过程分为4个阶段,而当锚固角较小时仅为3个阶段;随着锚固角的增加,峰值应力整体上先恒定后减小,弹性模量呈非线性降低;锚杆与试件力的相互作用主要分布在结构面与锚杆相交处以及锚杆两端;锚杆的显著变形和受力主要分布在结构面附近,大致为锚杆直径的3~4倍;随着锚固角的增大,锚杆轴力的贡献呈非线性减小,锚杆剪力的贡献呈线性增大,锚杆抗剪力呈非线性减小。 展开更多
关键词 结构面 锚杆支护 角度效应 pile单元 改进模型
下载PDF
Seismic response comparison and sensitivity analysis of pile foundation in liquefiable and non-liquefiable soils 被引量:1
12
作者 Jia Kemin Xu Chengshun +3 位作者 Du Xiuli Cui Chunyi Dou Pengfei Song Jia 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期87-104,共18页
Case history investigations have shown that pile foundations are more critically damaged in liquefiable soils than non-liquefiable soils.This study examines the differences in seismic response of pile foundations in l... Case history investigations have shown that pile foundations are more critically damaged in liquefiable soils than non-liquefiable soils.This study examines the differences in seismic response of pile foundations in liquefiable and non-liquefiable soils and their sensitivity to numerical model parameters.A two-dimensional finite element(FE)model is developed to simulate the experiment of a single pile foundation centrifuge in liquefiable soil subjected to earthquake motions and is validated against real-world test results.The differences in soil-pile seismic response of liquefiable and non-liquefiable soils are explored.Specifically,the first-order second-moment method(FOSM)is used for sensitivity analysis of the seismic response.The results show significant differences in seismic response for a soil-pile system between liquefiable and non-liquefiable soil.The seismic responses are found to be significantly larger in liquefiable soil than in non-liquefiable soil.Moreover,the pile bending moment was mainly affected by the kinematic effect in liquefiable soil,while the inertial effect was more significant in non-liquefiable soil.The controlling parameters of seismic response were PGA,soil density,and friction angle in liquefiable soil,while the pile bending moment was mainly controlled by PGA,the friction angle of soil,and shear modulus of loose sand in non-liquefiable soil. 展开更多
关键词 liquefiable non-liquefiable finite element analysis pile foundation seismic response sensitivity analysis
下载PDF
Centrifuge tests for seismic response of single pile foundation supported wind turbines in sand influenced by earthquake history 被引量:1
13
作者 Wang Yubing Zhang Zhongchang +1 位作者 Wu Xiaofeng Zhu Bin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期623-636,共14页
This paper reports on two sets of centrifuge model tests of wind turbines in dry sand and saturated sand subjected to earthquake sequences.The wind turbine system is composed of a single pile foundation and a wind tur... This paper reports on two sets of centrifuge model tests of wind turbines in dry sand and saturated sand subjected to earthquake sequences.The wind turbine system is composed of a single pile foundation and a wind turbine.All tests were applied with liquefaction experiments and analysis projects(LEAP)waves to simplify the analysis.The objectives of the tests are to investigate:(1)the influence of earthquake history on the seismic response of wind turbines;(2)the influence of earthquake history on the dynamic pile-soil interaction;and(3)the influence of two different foundation types on the seismic response of wind turbines.The tests indicated that earthquake history has a significant influence on the natural frequency of the pile and the soil around the pile in the saturated sand,but has no obvious influence on the dry sand.The shear modulus of the soil and the acceleration amplification factor of the pile top in both tests increased and the maximum bending moment envelope of the single pile foundation shrunk.The stiffness of the p-y curve in saturated sand was increased by the earthquake history,while that in dry sand was not significantly affected. 展开更多
关键词 earthquake history effect wind turbine pile bending moment dry and saturated sand ground dynamic p-y curves
下载PDF
Energy‐based analysis of seismic damage mechanism of multi‐anchor piles in tunnel crossing landslide area 被引量:1
14
作者 Hong Wei Honggang Wu +2 位作者 Guojun Ren Lin Tang Kang Feng 《Deep Underground Science and Engineering》 2023年第3期245-261,共17页
To study the damage mechanism of multi‐anchor piles in tunnel crossing landslide area under earthquake,the damping performance of multi‐anchor piles was discussed.The energy dissipation springs were used as the opti... To study the damage mechanism of multi‐anchor piles in tunnel crossing landslide area under earthquake,the damping performance of multi‐anchor piles was discussed.The energy dissipation springs were used as the optimization device of the anchor head to carry out the shaking table comparison test on the reinforced slope.The Hilbert spectrum and Hilbert marginal spectrum were proposed to analyze the seismic damage mechanism of the multi‐anchor piles,and the peak Fourier spectrum amplitude(PFSA)was used to verify the effectiveness of the method.The results show that the seismic energy is concentrated in the high‐frequency component(30-40Hz)of the Hilbert spectrum and the low‐frequency component(12-30 Hz)of the marginal spectrum.This indicates that they can be combined with the distribution law of the PFSA to identify the overall and local dynamic responses of the multi‐anchored piles,respectively.The stretchable deformation of the energy‐dissipation springs improves the coordination of the multi‐anchor piles,resulting in better pile integrity.The damage mechanism of the multi‐anchor piles is elucidated based on the energy method:local damage at the top and middle areas of the multi‐anchor piles is mainly caused by the low‐frequency component(12-30 Hz)of the marginal spectrum under the action of 0.15g and 0.20g seismic intensities.As the seismic intensity increases to 0.30g,the dynamic response of the slope is further amplified by the high‐frequency component(30-40 Hz)of the Hilbert energy spectrum,which leads to the overall damage of the multi‐anchor piles. 展开更多
关键词 Hilbert-Huang transform marginal spectrum multi‐anchor piles seismic damage mechanism
原文传递
Physical modeling of behaviors of cast-in-place concrete piled raft compared to free-standing pile group in sand 被引量:1
15
作者 Mehdi Sharafkhah Issa Shooshpasha 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期703-716,共14页
Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies i... Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies indicated that this method is too conservative. Only when the pile cap is elevated from the ground level,the raft bearing contribution can be neglected. In a piled raft foundation, pileesoileraft interaction is complicated. Although several numerical studies have been carried out to analyze the behaviors of piled raft foundations, very few experimental studies are reported in the literature. The available laboratory studies mainly focused on steel piles. The present study aims to compare the behaviors of piled raft foundations with free-standing pile groups in sand, using laboratory physical models. Cast-in-place concrete piles and concrete raft are used for the tests. The tests are conducted on single pile, single pile in pile group, unpiled raft, free-standing pile group and piled raft foundation. We examine the effects of the number of piles, the pile installation method and the interaction between different components of foundation. The results indicate that the ultimate bearing capacity of the piled raft foundation is considerably higher than that of the free-standing pile group with the same number of piles. With installation of the single pile in the group, the pile bearing capacity and stiffness increase. Installation of the piles beneath the raft decreases the bearing capacity of the raft. When the raft bearing capacity is not included in the design process, the allowable bearing capacity of the piled raft is underestimated by more than 200%. This deviation intensifies with increasing spacing of the piles. 展开更多
关键词 FREE-STANDING pile group piled RAFT pileesoileraft interaction PHYSICAL modeling CAST-IN-PLACE concrete pileS
下载PDF
Simplified analytical solution for stress concentration ratio of piled embankments incorporating pile–soil interaction 被引量:1
16
作者 Qiang Luo Ming Wei +1 位作者 Qingyuan Lu Tengfei Wang 《Railway Engineering Science》 2021年第2期199-210,共12页
Piled embankments have been extensively used for high-speed rail over soft soils because of their effectiveness in minimizing differential settlement and shortening the construction period.Stress concentration ratio,d... Piled embankments have been extensively used for high-speed rail over soft soils because of their effectiveness in minimizing differential settlement and shortening the construction period.Stress concentration ratio,defined as the ratio of vertical stress carried by pile heads(or pile caps if applicable)to that by adjacent soils,is a fundamental parameter in the design of piled embankments.In view of the complicated load transfer mechanism in the framework of embankment system,this paper presents a simplified analytical solution for the stress concentration ratio of rigid pile-supported embankments.In the derivation,the effects of cushion stiffness,pile–soil interaction,and pile penetration behavior are considered and examined.A modified linearly elastic-perfectly plastic model was used to analyze the mechanical response of a rigid pile–soil system.The analytical model was verified against field data and the results of numerical simulations from the literature.According to the proposed method,the skin friction distribution,pile–soil relative displacement,location of neural point,and differential settlement between the pile head(or cap)and adjacent soils can be determined.This work serves as a fast algorithm for initial and reasonable approximation of stress concentration ratio on the design aspects of piled embankments. 展开更多
关键词 piled embankments pile-soil interaction pile penetration CUSHION Rigid pile High-speed railway
下载PDF
Experimental Study of Submergence Ratio on Local Scour Around a Square Pile in Steady Flow
17
作者 DU Shengtao WU Guoxiang +2 位作者 LIANG Bingchen ZHU David Z WANG Risheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第5期1277-1288,共12页
Scour around a submerged square pile was realized experimentally in a steady flow to study the effects of flow depth on local scour.Flow depth to pile height ratios ranging from 1.5 to 5 in uniform sand and 2 to 5 in ... Scour around a submerged square pile was realized experimentally in a steady flow to study the effects of flow depth on local scour.Flow depth to pile height ratios ranging from 1.5 to 5 in uniform sand and 2 to 5 in non-uniform sand were tested in the approaching flow velocity to critical velocity(larger than which the sediment particle is motivated)ratios of 0.56 and 1.03,respectively.The influences of flow depth were investigated on the basis of analysis of the three-dimensional topography,temporal maximum scour depth,bed profile development,and equilibrium scour depth.Results showed that the maximum scour depth was at the upstream corners of the pile other than at the stagnation point.The evolutions of the maximum scour depth data in non-uniform sand were well fitted with a recent exponential function,which characterized the initial,developing,and equilibrium stages of scour depth.The scour hole slopes upstream of the pile were found to be parallel to each other in the process of each test and were mainly governed by the sediment repose underwater.The equilibrium scour depth varied slightly with flow depth when the submergence ratio was larger than 1 in uniform sand while it was 2 in non-uniform sand.The armoring effects of coarse sediment particles markedly reduced the sediment transport in non-uniform sand despite the 0.34 increment in non-uniformity. 展开更多
关键词 non-uniform sand square pile local scour SUBMERGED scour depth
下载PDF
Dynamic soil arching in piled embankment under train load of high-speed railways
18
作者 Niu Tingting Yang Yule +2 位作者 Ma Qianli Zou Jiuqun Lin Bin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期719-730,共12页
Piled embankments have many advantages that have been applied in high-speed railway construction engineering.However,the load transfer mechanism of piled embankments,such as soil arching and tension membranes,is still... Piled embankments have many advantages that have been applied in high-speed railway construction engineering.However,the load transfer mechanism of piled embankments,such as soil arching and tension membranes,is still unclear,especially under dynamic loads.To investigate the soil arching and tension membrane under dynamic train loads on high-speed railways,a large-scale piled embankment model test with X-shaped piles as vertical reinforcement was performed,in which twenty-eight earth pressure cells were installed in the piled embankment and an M-shaped wave was adopted to simulate the high-speed railway train load.The results show that dynamic soil arching only occurs when two bogies of a carriage pass by and disappears at other times.The dynamic soil arching and membrane effect are the most significant under the concrete base.The arching height,stress concentration ratio and pile-soil load sharing ratio have a minimal value at 25 Hz.The dynamic soil arching degrades severely at 25 Hz,whose height at 25 Hz is only 0.35 times that at 5 Hz.The arching height fluctuates over a narrow range with increasing loading amplitude.The stress concentration ratio and the pile-soil load sharing ratio increase monotonically as the loading amplitude increases. 展开更多
关键词 dynamic soil arching membrane effect piled embankment train load model test
下载PDF
Analytical solutions for the restraint effect of isolation piles against tunneling-induced vertical ground displacements
19
作者 Liqiang Cao Xiangsheng Chen +3 位作者 Xing-Tao Lin Dong Su Huangcheng Fang Dechun Lu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2582-2596,共15页
This paper presents a simplified elastic continuum method for calculating the restraint effect of isolation piles on tunneling-induced vertical ground displacement,which can consider not only the relative sliding of t... This paper presents a simplified elastic continuum method for calculating the restraint effect of isolation piles on tunneling-induced vertical ground displacement,which can consider not only the relative sliding of the pile‒soil interface but also the pile rowesoil interaction.The proposed method is verified by comparisons with existing theoretical methods,including the boundary element method and the elastic foundation method.The results reveal the restraining mechanism of the isolation piles on vertical ground displacements due to tunneling,i.e.the positive and negative restraint effects exerted by the isolation piles jointly drive the ground vertical displacement along the depth direction from the original tunneling-induced nonlinear variation situation to a relatively uniform situation.The results also indicate that the stiffness of the pile‒soil interface,including the pile shaft‒surrounding soil interface and pile tip-supporting soil interface,describes the strength of the pile‒soil interaction.The pile rows can confine the vertical ground displacement caused by the tunnel excavation to the inner side of the isolation piles and effectively prevent the vertical ground displacement from expanding further toward the outer side of the isolation piles. 展开更多
关键词 Restraining mechanism Restraint effect Isolation piles Ground displacement TUNNELING
下载PDF
Combined load bearing capacity of rigid piles embedded in a crossanisotropic clay deposit using 3D finite element lower bound
20
作者 Ardavan Izadi Reza Jamshidi Chenari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期717-737,共21页
In this study,an iterative-based three-dimensional finite element lower bound in association with the second-order cone programming method is adopted to evaluate the limit load of a single pile embedded in cross-aniso... In this study,an iterative-based three-dimensional finite element lower bound in association with the second-order cone programming method is adopted to evaluate the limit load of a single pile embedded in cross-anisotropic soils under general loading condition.The lower bound solutions of the pile embedded in an anisotropic soil deposit can be found by formulating the element equilibrium,equilibrium of shear and normal stresses along discontinuities,boundary conditions,yield function,and optimizing the objective function through the second-order cone programming method in conjunction with an iterative-based update procedure.A general loading condition is considered to profile the expansion of the safe load in the vertical-horizontal-moment(V-H-M)space.The results of this study are compared and validated against three different cases including an isotropic lateral loading,anisotropic end bearing capacity,and a pile embedded in an isotropic soil deposit under general loading condition.A parametric study is conducted to evaluate the impact of different influencing factors.It was found that the effect of anisotropy on the variation of lateral limit load of a single pile is more pronounced than the corresponding vertical and bending moment limit loads,whereas the interface properties have more significant effects on the vertical and bending moment limit loads in comparison to the lateral limit load. 展开更多
关键词 Rigid pile Cross-anisotropy CLAY Combined loading Three-dimensional finite element lower BOUND
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部