Based on the stability theory, numerical simulations and theoretical calculations are performed for a projectile with wrap-around fins. Its stability is analyzed and the flow field is simulated with computational flui...Based on the stability theory, numerical simulations and theoretical calculations are performed for a projectile with wrap-around fins. Its stability is analyzed and the flow field is simulated with computational fluid dynamics method. Consequently, the pitching moment coefficient of the projectile is further investigated under the conditions of Mach number ranging from 0.3 to 0.8, attack angle from 0 to 8° and yaw angle from 0 to 4°. A trajectory equation is established and its trajectory characteristics are also explored. All the results of theoretical analysis, numerical simulation and trajectory equation agree well with each other, which indicates the projectile is flying steadily at the given conditions. These results provide an effective way for judging the stability of the projectile with wrap-around fins.展开更多
基金the National Natural Science Foundation of China (10572026)
文摘Based on the stability theory, numerical simulations and theoretical calculations are performed for a projectile with wrap-around fins. Its stability is analyzed and the flow field is simulated with computational fluid dynamics method. Consequently, the pitching moment coefficient of the projectile is further investigated under the conditions of Mach number ranging from 0.3 to 0.8, attack angle from 0 to 8° and yaw angle from 0 to 4°. A trajectory equation is established and its trajectory characteristics are also explored. All the results of theoretical analysis, numerical simulation and trajectory equation agree well with each other, which indicates the projectile is flying steadily at the given conditions. These results provide an effective way for judging the stability of the projectile with wrap-around fins.