期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Assessment of the Plantar Pressure, Muscle Strength and Balance in Patients with Type 2 Diabetes Mellitus in Cyprus
1
作者 Başar Öztürk Ender Angın +2 位作者 Zehra Güçhan Yasin Yurt Mehtap Malkoç 《Open Journal of Endocrine and Metabolic Diseases》 2016年第5期151-158,共8页
Aims: Diabetes Mellitus (DM) is a metabolic disorder which affects whole systems of human body. This study aimed to compare the strength of foot muscles, dynamic balance, and peak plantar pressure between diabetic pat... Aims: Diabetes Mellitus (DM) is a metabolic disorder which affects whole systems of human body. This study aimed to compare the strength of foot muscles, dynamic balance, and peak plantar pressure between diabetic patients before developing polyneuropathy and healthy peers. Methods: 21 people, 11 diabetic patients and 10 age-matched healthy peers, were included in the study. A manual muscle tester (model 01163 Lafayette) was used to assess muscle strength. Pedobarography was the device to determine the distribution of plantar pressure into nine regions of foot. Dynamic balance was also measured by using a mobile platform (Techno-body, PK 200 WL, Italy). Results: Diabetic and control groups had similar muscle strength and dynamic balance (p > 0.05). Most of the plantar pressure findings were also similar (p > 0.05). There were significant differences in only two regions of foot between two groups (p < 0.05). Conclusion: Diabetes Mellitus is not a factor influencing balance and muscle strength before polyneuropathy. However, it is possible to state that it may negatively affect the distribution of plantar pressure so clinians should assess and treat this distribution in the patients with DM. 展开更多
关键词 DIABETES Muscle Strength BALANCE plantar pressure
下载PDF
Smart passive gait retraining intervention via pebbles for reducing peakplantar pressure: Short-term results
2
作者 Fatemeh Farhadi Haihua Ou +1 位作者 Peter Shull Shane Johnson 《Medicine in Novel Technology and Devices》 2023年第3期29-40,共12页
Recently, there has been a growing interest in gait retraining to alter the gait parameters of different populations.In these gait retraining, peak plantar pressure (PPP) was considered as an important parameter of th... Recently, there has been a growing interest in gait retraining to alter the gait parameters of different populations.In these gait retraining, peak plantar pressure (PPP) was considered as an important parameter of the footbiomechanics. It has been found that high PPP correlates to the common foot deformities including pes planus/cavus. However, previous studies utilized excessive electronics in gait retraining, which is challenging toimplement daily especially when device cleaning, flexibility and portability are considered. Therefore, this studyinvestigated feasibility of a novel unpowered gait retraining for reducing high PPP. Twelve potential participantsidentified for investigation through a baseline PPP evaluation with Novel Pedar-x system. Participants received asingle session for the gait retraining with pebbles in the form of rigid spherical inserts (RSI) placed in locations ofhigh PPP inside the deformable insole. This provides tactile cues alerting the participants to alter their gait toreduce excess PPP. The PPP values were tracked in weekly follow-up sessions for 6 weeks. The results demonstrated that participants responded to RSI altering their gait to reduce PPP and maximum force by 14% and 10.5%after six weeks respectively. This study is valuable for physicians in reducing PPP when non-electronics arerequired. 展开更多
关键词 Smart passive gait retraining Pebbles Peak plantar pressure Tactile cues
下载PDF
Dynamic biomechanical effect of lower body positive pressure treadmill training for hemiplegic gait rehabilitation after stroke: A case report 被引量:1
3
作者 Hui-Fang Tang Bing Yang +2 位作者 Qiang Lin Jun-Jie Liang Zhi-Wei Mou 《World Journal of Clinical Cases》 SCIE 2021年第3期632-638,共7页
BACKGROUND Lower body positive pressure(LBPP)treadmill has potential applications for improving the gait of patients after stroke,but the related mechanism remains unclear.CASE SUMMARY A 62-year-old male patient suffe... BACKGROUND Lower body positive pressure(LBPP)treadmill has potential applications for improving the gait of patients after stroke,but the related mechanism remains unclear.CASE SUMMARY A 62-year-old male patient suffered from ischemic stroke with hemiplegic gait.He was referred to our hospital because of a complaint of left limb weakness for 2 years.The LBPP training was performed one session per day and six times per week for 2 wk.The dynamic plantar pressure analysis was taken every 2 d.Meanwhile,three-digital gait analysis and synchronous electromyography as well as clinical assessments were taken before and after LBPP intervention and at the 4-wk follow-up.During LBPP training,our patient not only improved his lower limb muscle strength and walking speed,but more importantly,the symmetry index of various biomechanical indicators improved.Moreover,the patient’s planter pressure transferring from the heel area to toe area among the LBPP training process and the symmetry of lower body biomechanical parameters improved.CONCLUSION In this study,we documented a dynamic improvement of gait performance in a stroke patient under LBPP training,which included lower limb muscle strength,walking speed,and symmetry of lower limb biomechanics.Our study provides some crucial clues about the potential dynamic mechanism for LBPP training on gait and balance improvement,which is related to rebuilding foot pressure distribution and remodeling symmetry of biomechanics of the lower limb. 展开更多
关键词 Lower body positive pressure treadmill Dynamic plantar pressure STROKE Gait analysis Electromyography Case report REHABILITATION
下载PDF
The characteristics of walking strategy in elderly patients with type 2 diabetes
4
作者 Xi Pan Jiao-jiao Bai +3 位作者 Jiao Sun Yue Ming Li-rong Chen Zheng Wang 《International Journal of Nursing Sciences》 2016年第2期185-189,共5页
Objective:To explore the walking strategy by monitoring the characteristics of center of pressure(COP)of gait in the elderly with type2 diabetes.Methods:All of the elderly patients with type2 diabetes(n=543)were enrol... Objective:To explore the walking strategy by monitoring the characteristics of center of pressure(COP)of gait in the elderly with type2 diabetes.Methods:All of the elderly patients with type2 diabetes(n=543)were enrolled from Huadong Hospital Affiliated to Fudan University.Dynamic barefoot plantar pressure was assessed by Footscan7 USB2 flat.Outcome measures included excursion,the x-and ycoordinates displacement of COP and falling frequency.Results:There were 64.5%of cases with abnormal COP trajectory.Among them,45.2%were with abnormal fold-back,14.0%with two or more abnormal fold-back,20.5%with abnormal beginning point deviating from the heel to the arch and metatarsal region,18.0%with abnormal terminal point deviating from the hallux to toe 2e5 and the x-and y-coordinates displacement of COP in both feet are asymmetry.Conclusions:It highlights to put forward the walking strategy according to the abnormal COP trajectory.Due to the elderly diabetics with high risks of falling,the rehabilitation nursing should be strengthened mainly including the training of enhancing proprioception to prevent the elderly patients with type2 diabetes from falling. 展开更多
关键词 ELDERLY DIABETES plantar pressure Walking strategy Center of pressure
下载PDF
The interaction effects of rocker angle and apex location in rocker shoe design on foot biomechanics and Achilles tendon loading
5
作者 Tony Lin-Wei Chen Duo Wai-Chi Wong +5 位作者 Yinghu Peng Yan Wang Ivy Kwan-Kei Wong Tsz-Kit Lam Wing-Kai Lam Ming Zhang 《Medicine in Novel Technology and Devices》 2022年第1期96-101,共6页
The influences of rocker shoes on foot biomechanics were controversial because the interaction between two design factors—rocker angle and apex location,was usually omitted.This study investigated the interaction ef... The influences of rocker shoes on foot biomechanics were controversial because the interaction between two design factors—rocker angle and apex location,was usually omitted.This study investigated the interaction effects of rocker angle and apex location on plantar foot pressure,metatarsophalangeal/ankle angle,and Achilles tendon force during walking.Ten participants performed walking trials under six rocker shoe conditions:2 rocker angles(mild and severe)×3 apex locations(distal,standard,and proximal),wherein the plantar foot pressure was measured and the movement data were processed by musculoskeletal modeling to report joint angle and Achilles tendon force.A two-way ANOVA repeated measures was used for statistics.Significant interaction effects were reported in examinations of forefoot pressure,midfoot pressure,and metatarsophalangeal dorsiflexion.The standard apex significantly reduced peak forefoot and midfoot pressures(p=0.008–0.034,Hedges'g=0.75–0.84),which was further decreased by a severe rocker angle(p=0.006,Hedges'g=0.51–0.81).Moving the apex proximally reduced Achilles tendon forces(p<0.001,Hedges'g=0.80)and facilitated both metatarsophalangeal dorsiflexion and ankle plantarflexion during push-off(p=0.003–0.006,Hedges'g=0.03–0.82).Rocker angle seemed to have fewer effects on ankle joint angle and Achilles tendon force.We concluded that apex location was likely the dominant design factor of the rocker sole in influencing foot biomechanics,yet its interactions with rocker angle should be considered.The configuration of the two features could be varied to possess different therapeutic merits and adapt to specific application purposes. 展开更多
关键词 GAIT Rocker shoe BIOMECHANICS Computer simulation plantar pressure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部