Interest in the dynamics of soil respiration(R_(S))in subalpine forest ecosystems is increasing due to their high soil carbon density and potential sensitivity to environmental changes.However,as a principal silvicult...Interest in the dynamics of soil respiration(R_(S))in subalpine forest ecosystems is increasing due to their high soil carbon density and potential sensitivity to environmental changes.However,as a principal silvicultural practice,the long-term impacts of thinning on R_(S) and its heterotrophic and autotrophic respiration components(R_(h) and Ra,respectively)in subalpine plantations are poorly understood,espe-cially in winter.A 3-year field observation was carried out with consideration of winter CO_(2) efflux in middle-aged sub-alpine spruce plantations in northwestern China.A trench-ing method was used to explore the long-term impacts of thinning on Rs,Rn and R_(a).Seventeen years after thinning,mean annual Rs,Rn and R_(a) increased,while the contribu-tion of R_(h) to R_(s) decreased with thinning intensity.Thinning significantly decreased winter R,because of the reduction in R_(n) but had no significant effect on Ra.The temperature sensitivity(Q_(10))of R_(h) and R_(a) also increased with thinning intensity,with lower Q_(10) values for R_(h)(2.1-2.6)than for Ra(2.4-2.8).The results revealed the explanatory variables and pathways related to R_(n) and R_(a) dynamics.Thinning increased soil moisture and nitrate nitrogen(NO_(3)^(-)-N),and the enhanced nitrogen and water availability promoted R_(h) and R_(a) by improving fine root biomass and microbial activity.Our results highlight the positive roles of NO_(3)^(-)-N in stimulating R_(s) components following long-term thinning.Therefore,applications of nitrogen fertilizer are not recommended while thinning subalpine spruce plantations from the perspective of reducing soil CO_(2) emissions.The increased Q_(10) values of R_(s) components indicate that a large increase in soil CO_(2) emissions would be expected following thinning because of more pronounced climate warming in alpineregions.展开更多
Hot arid zones represent vital reservoirs of unique species and ecosystems,holding significant importance for biodiversity.This study aimed to explore the plant diversity associated with tree plantations in urban ecos...Hot arid zones represent vital reservoirs of unique species and ecosystems,holding significant importance for biodiversity.This study aimed to explore the plant diversity associated with tree plantations in urban ecosystems under hyper-arid climatic conditions in the Sahara Desert of Algeria.In May 2022,30 quadrats measuring 1 m^(2) each were established at the base of Phoenix dactylifera,Leucaena leucocephala,and Tamarix aphylla,corresponding to the dominant tree species in each of three plantations.In each quadrat,the plant quantitative inventory was conducted to measure plant diversity and similarity among the studied plantations.Based on this,we assessed the plant functional traits and rarity/abundance status of the flora.The findings revealed a diverse flora associated with the studied plantations,comprising 29 plant species grouped into 27 genera and 12 families.Notably,Poaceae(accounting for 30.8% of the flora),Asteraceae(25.0%),and Zygophyllaceae(21.6%)were well-represented.With an overall density of approximately 555 individuals/m^(2),Zygophyllum album(120 individuals/m^(2))and Polypogon monspeliensis(87 individuals/m^(2))emerged as the most abundant species.Functional trait analysis underscored the pivotal role of therophytes(constituting over 50.0% of the flora)and anemochorous species(33.0%-62.5%).Phytogeographic analysis emphasized the prevalence of the Saharo-Arabic element(constituting over 31.0% of the flora)and the Mediterranean Saharo-Arabic element(9.5%-21.5%).The Cosmopolitan element thrived under disturbance factors,recording percentages from 13.0% to 20.0% of the plant community.The rarity/abundance status of the flora emphasized the significance of rare,common,and very common species in the studied plantations.These findings could provide fundamental data for the effective control and management of biodiversity in hot hyper-arid urban ecosystems.展开更多
Different chemical compositions of soil organic carbon(SOC)affect its persistence and whether it signifi-cantly differs between natural forests and plantations remains unclear.By synthesizing 234 observations of SOC c...Different chemical compositions of soil organic carbon(SOC)affect its persistence and whether it signifi-cantly differs between natural forests and plantations remains unclear.By synthesizing 234 observations of SOC chemical compositions,we evaluated global patterns of concentra-tion,individual chemical composition(alkyl C,O-alkyl C,aromatic C,and carbonyl C),and their distribution even-ness.Our results indicate a notably higher SOC,a markedly larger proportion of recalcitrant alkyl C,and lower easily decomposed carbonyl C proportion in natural forests.How-ever,SOC chemical compositions were appreciably more evenly distributed in plantations.Based on the assumed con-ceptual index of SOC chemical composition evenness,we deduced that,compared to natural forests,plantations may have higher possible resistance to SOC decomposition under disturbances.In tropical regions,SOC levels,recalcitrant SOC chemical composition,and their distributed evenness were significantly higher in natural forests,indicating that SOC has higher chemical stability and possible resistance to decomposition.Climate factors had minor effects on alkyl C in forests globally,while they notably affected SOC chemi-cal composition in tropical forests.This could contribute to the differences in chemical compositions and their distrib-uted evenness between plantations and natural stands.展开更多
Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An im...Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An important species for afforestation in dry environments of northern China,Mongolian pine(Pinus sylvestris var.mongolica Litv.)has recently exhibited growth decline and dieback on many sites,particularly pronounced in old-growth plantations.However,changes in response to drought stress by this species with age as well as the underlying mechanisms are poorly understood.In this study,tree-ring data and remotely sensed vegetation data were combined to investigate variations in growth at individual tree and stand scales for young(9-13 years)and aging(35-52 years)plantations of Mongolian pine in a water-limited area of northern China.A recent decline in tree-ring width in the older plantation also had lower values in satellited-derived normalized difference vegetation indices and normalized difference water indices relative to the younger plantations.In addition,all measured growth-related metrics were strongly correlated with the self-calibrating Palmer drought severity index during the growing season in the older plantation.Sensitivity of growth to drought of the older plantation might be attributed to more severe hydraulic limitations,as reflected by their lower sapwood-and leaf-specific hydraulic conductivities.Our study presents a comprehensive view on changes of growth with age by integrating multiple methods and provides an explanation from the perspective of plant hydraulics for growth decline with age.The results indicate that old-growth Mongolian pine plantations in water-limited environments may face increased growth declines under the context of climate warming and drying.展开更多
Tropical forests provide several ecosystem services and functions and support approximately two-thirds of the world’s biodiversity but are seriously threatened by deforestation.Approaches to counteract this menace ha...Tropical forests provide several ecosystem services and functions and support approximately two-thirds of the world’s biodiversity but are seriously threatened by deforestation.Approaches to counteract this menace have revolved around aff orestation with several or a single tree species.We thus investigated how plantation forests with either a single or several tree species infl uenced arthropod taxonomic and community composition using pitfall traps to sample selected groups of epigeal arthropods(Araneae,Coleoptera,Orthoptera and Hymenoptera)and with environmental variables assessed simultaneously.Our results revealed 54 taxonomic groups with signifi cantly higher taxonomic richness,activity density,and diversity in the mixed stands than in the monoculture stands.The significant differences in community composition were mainly driven by families including Lycosidae,Formicidae,Staphylinidae,Scotylidae,Hydrophilidae,Gryllidae and Scarabaeidae and were explained by distinct habitat characteristics(canopy openness,litter depth,deadwood volume,and tree height).While the diverse tree communities and heterogeneous vegetation structure off ered food and habitat resources for diverse arthropod groups,the allelopathic nature coupled with homogenous stand characteristics of the Tectona grandis stands in the monoculture suppressed the growth of understorey vegetation that could otherwise serve as food and habitat resources for arthropods,which might have led to limited activities and diversity of arthropods in the monoculture plantation stands.The fi ndings thus highlight the need to promote mixed tree plantations in degraded tropical areas,especially when restoring biodiversity is the prime management focus.展开更多
Oil palm is cultivated by agro-industries and smallholders for vegetable oil production. Good farm management practices with balanced soil and plant macronutrients are needed to attain optimum yields. Smallholder oil ...Oil palm is cultivated by agro-industries and smallholders for vegetable oil production. Good farm management practices with balanced soil and plant macronutrients are needed to attain optimum yields. Smallholder oil palm farmers of Dibombari Sub-Division, Cameroon, suffer from low on farm yields which could emanate from the agronomic practices implemented, which also has an influence on the soil and plant macronutrient status. This study provides information on the agronomic practices, soil and plant macronutrients status in smallholder oil palm fields. Structured questionnaires were administered to 200 farmers to collect data on their agronomic practices, using a stratified random sampling design. Soil and plants were sampled from plantations of different age groups (control, >0 - 4 years, >4 - 8 years and >8 - 15 years’ plantations) in four locations of the Sub-Division (i.e. Dibombari-central, Bonamateke, Bomono and Nkapa) using a randomized complete block design. Data collected, was analyzed using descriptive and inferential statistics. The results showed that 65% of farmers planted Tenera variety, with majority of them below the standards for weeding (81%), fertilizer use (100%), pruning (62%), pest/disease control (90.5%) and harvesting (96%) practices. Soil macronutrients were low across the different plantations except P which was optimal at >0 - 4 years and >4 - 8 years’ plantations but low at >8 - 15 years’ plantation. Similarly, for plant macronutrients, N and P were optimal across the different plantations, while K and Mg were optimal at >0 - 4 years’ plantation but low at >4 - 8 years and >8 - 15 years’ plantations. Thus, agronomic practices and macronutrient status of soil and plants were below standards in smallholder oil palm plantations of Dibombari, leading to low yields of fresh fruit bunches.展开更多
Black locust(Robinia pseudoacacia L.)plantations have contributed significantly to soil and water conservation and ecological reconstruction on China’s Loess Plateau.Understanding the impact of stand and environment ...Black locust(Robinia pseudoacacia L.)plantations have contributed significantly to soil and water conservation and ecological reconstruction on China’s Loess Plateau.Understanding the impact of stand and environment on species composition of understory woody plants will improve the stability of existing black locust plantations.Ten stands were selected in second-generation black locust plantations in tableland and gully areas of the Loess Plateau.The number of understory tree species in the tablelands was significantly lower than in the gully stands.Regenerated black locust(19.76%)and Rubus corchorifolius L.f.(64.85%)were the most abundant understory tree and shrub species,respectively,in the tableland stands;Broussonetia papyrifera(L.)L’Hér.ex Vent.(6.77%)and Acanthopanax senticosus(Rupr.Maxim.)Harms.(37.22%)were most abundant in the gully stands.Species richness(S),Shannon diversity(H),and evenness index(J)of the understory plants were significantly lower in the tableland stands than in the gully stands.More diverse understory species and community structures occurred in the gully stands.Differences in species diversity among landform positions may be attributed to differences in soil moisture.In addition,77.57%of the variation in understory species composition was explained,among which shrub and herb coverage,stand age,leaf area index,slope and total soil phosphorus in the 10-20 cm layer were the main factors.Soil organic carbon and total potassium significantly impacted S,H and J.Considering the environmental conditions and the biological characteristics of the plants investigated,R.corchorifolius should be given priority in the development of tableland stands,while B.papyrifera and Celtis sinensis Pers.should form mixed forests with black locust in gully stands.This management could promote biodiversity and stability of the existing black locust plantations but also optimize regional landscape patterns.展开更多
Oil palm plantations have dramatically expanded in tropical Asia over the past decades.Although their establishment has been projected to increase nitrous oxide(N_(2)O)emissions,earlier reports have shown inconsistent...Oil palm plantations have dramatically expanded in tropical Asia over the past decades.Although their establishment has been projected to increase nitrous oxide(N_(2)O)emissions,earlier reports have shown inconsistent results.This study analyzed these previously published data to compare N_(2)O emissions in oil palm plantations to reference forests.A linear mixed-eff ects model was used to examine the signifi cance of the eff ect of establishing oil palm plantations on N_(2)O emissions,rather than to calculate mean eff ect sizes because of limitations in the data structure.The results indicated that N_(2)O emissions were signifi cantly greater from oil palm plantations than from reference forests,as expected.This is the fi rst study to report the eff ect of oil palm plantations on N_(2)O emissions by synthesizing previously published data.To quantify the size of this eff ect,additional studies with frequent and long-term monitoring data are needed.展开更多
Background:Chinese pine(Pinus tabuliformis Carr.)is one of the major afforestation species in northern China and plays a key role in restoring forest ecosystems and preserving soil and water.However,most Chinese pine ...Background:Chinese pine(Pinus tabuliformis Carr.)is one of the major afforestation species in northern China and plays a key role in restoring forest ecosystems and preserving soil and water.However,most Chinese pine plantations are experiencing ecological problems such as the low diversity of understory plants and difficulty in natural regeneration.Thinning has been widely used to maintain and improve a variety of forest ecosystem services from plantations.To date,however,few studies have been conducted to systematically determine the effects of thinning on understory plant diversity and the regeneration of Chinese pine in plantations.Methods:We conducted a literature search,and selected 22 publications covering a total of 83 treatments related to thinning effects on the species richness of understory plants and 15 publications covering a total of 43 treatments related to thinning effects on the regeneration of Chinese pine,in tree plantations of northern China.The data from the literature were synthesized and evaluated with meta-analysis approach to determine the treatment effects.Results:Compared with the control stands,thinning increased the species richness of shrubs and herbs by an average of 25.3%and 26.5%,respectively.While the varying thinning intensities all had significantly positive effects on the species richness of understory plants,only moderate thinning(30%–50%)had a positive effect on the density of regenerating seedlings and saplings of Chinese pine(60.2%).The species richness of understory plants was greatest after 14 years of thinning with an increase of 36.3%,whereas the density of regenerating Chinese pine seedlings and saplings reached a maximum after≥11 years of thinning with an increase of 76.5%,compared to that of the unthinned stands.Thinning in the half-mature plantations had the greatest effects on the understory shrub richness(44.1%)and the density of regenerating Chinese pine seedlings and saplings(86.5%).Both single and multiple thinning were found to significantly promote the species richness of understory plants and the density of regenerating Chinese pine seedlings and saplings,and the positive effects of thinning were greater in areas with a humidity index(HI)<30 than in areas with an HI≥30.In general,age group,planting density and recovery time were prominent factors affecting the species richness of understory plants,whereas the slope,HI and recovery time were the dominant controls of the density of regenerating Chinese pine seedlings and saplings,indicating differential effects of thinning on the species richness of understory plants and the regeneration capacity of Chinese pine in plantations.Conclusion:Thinning appears to be a feasible management measure to improve the understory plant diversity and regeneration capacity of Chinese pine in plantations.We postulate that moderate thinning in half-mature forest stands with an HI<30 can help effectively promote the species diversity of understory plants and the natural regeneration of Chinese pine,thereby maintaining a more resilient stand structure and the development of Chinese pine plantations.展开更多
As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distri...As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distribution area is extremely complex,with a variety of vegetation types.In addition,tea distribution is scattered and fragmentized in most of China.Therefore,it is difficult to obtain accurate tea information based on coarse resolution remote sensing data and existing feature extraction methods.This study proposed a boundary-enhanced,object-oriented random forest method on the basis of high-resolution GF-2 and multi-temporal Sentinel-2 data.This method uses multispectral indexes,textures,vegetable indices,and variation characteristics of time-series NDVI from the multi-temporal Sentinel-2 imageries to obtain abundant features related to the growth of tea plantations.To reduce feature redundancy and computation time,the feature elimination algorithm based on Mean Decrease Accuracy(MDA)was used to generate the optimal feature set.Considering the serious boundary inconsistency problem caused by the complex and fragmented land cover types,high resolution GF-2 image was segmented based on the MultiResolution Segmentation(MRS)algorithm to assist the segmentation of Sentinel-2,which contributes to delineating meaningful objects and enhancing the reliability of the boundary for tea plantations.Finally,the object-oriented random forest method was utilized to extract the tea information based on the optimal feature combination in the Jingmai Mountain,Yunnan Province.The resulting tea plantation map had high accuracy,with a 95.38%overall accuracy and 0.91 kappa coefficient.We conclude that the proposed method is effective for mapping tea plantations in high heterogeneity mountainous areas and has the potential for mapping tea plantations in large areas.展开更多
[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to...[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to evaluate the ecological benefits of rubber plantations and provide basic data for studying the effect of tropical land utilization/cover change on the global carbon and nitrogen cycle. [Method]The situs was in Danzhou city,western region of Hainan Island,and the samples were four kinds of rubber plantations soil at different ages and one kind of control check (pepper,Piper nigrum L.) soil. In this research,four quadrats were set up in each sample,and the size of each was 20 cm×20 cm. Four specimens were gathered from four layers of 0-15,15-30,30-45,45-60,and the average of them was the last analysis result of each sample. Soil density was measured by cutting ring method,soil containing and hygroscopic water was detected by oven drying method,soil organic carbon (SOC) was measured by low temperature heated outside potassium dichromate oxidation-colorimetry method,and soil total nitrogen (STN) was detected by semimicro Kjeldahl method. [Result]SOC contents of different layers in rubber plantations soil at different age stages (including the CK pepper soil,the same as below) varied little,and the content of SOC in surface layer (0-15 cm) was higher,while the underlayer (45-60 cm) was lower than the average value; there was significant difference in SOC content among different kinds of soil,and the content was of 6.03-7.78 g/kg,tapping young trees (7 years) CK pepper mature age trees (30 years) prophase of young trees (2 years) tapping trees (16 years); there was no significant difference in SOC storage among different kinds of soil,and the storage was of 61.33-74.29 t/hm2,mature age trees (30 years) tapping young trees (7 years) prophase of young trees (2 years) CK pepper tapping trees (16 years); there was significant difference in STN content among rubber plantations soil at different age stages,the content was of 410.86-664.14 mg/kg2,CK pepper tapping young trees (7 years) prophase of young trees (2 years) mature age trees (30 years) tapping trees (16 years),and STN content of tapping trees (16 years) soil was extremely lowest; there was significant difference in C/N ratio among different kinds of soil,the ratio was of 10.94-14.47,and the ratio of tapping trees (16 years) mature age trees (30 years) tapping young trees (7 years) CK pepper prophase of young trees (2 years). [Conclusion]There wasn't unhealthy effect of rubber trees planted in tropical area on the content and storage of SOC,the content of STN and the ratio of C/N. there was no significant difference between rubber plantations and CK pepper soil,and the effects of rubber plantation on soil carbon-nitrogen was similar to that of other tropical crops (such as pepper).展开更多
[Objectives]The paper was to study the fine root distribution characteristics of Populus cathayana plantations at different ages in alpine sandy land.[Methods]With 5,10,15,20,and 25 years old P.cathayana plantation in...[Objectives]The paper was to study the fine root distribution characteristics of Populus cathayana plantations at different ages in alpine sandy land.[Methods]With 5,10,15,20,and 25 years old P.cathayana plantation in the eastern margin of Gonghe Basin,Qinghai Province as the research objects,fine roots were collected by root core drilling method,and the differences of fine root biomass,root length density,average diameter and root tip number at the soil depths of 0-20,20-40,40-60,60-80 and 80-100 cm were analyzed.[Results]The total biomass density of P.cathayana plantation was mainly distributed in the soil layer of 0-60 cm,accounting for 76%of the entire soil layer,and its value increased with the increase in forest age.With the increase in different forest ages,the root length density,average diameter and root tip number of living fine roots in the soil layer of 0-60 cm accounted for 74%-81%of the entire soil layer,and the proportions in the soil layers of 60-80 and 80-100 cm were 9%-11%.The biomass density,root length density,average diameter and root tip number of living and dead fine roots of P.cathayana plantation increased with the increase of forest age.The root length density,average diameter and root tip number of P.cathayana fine roots showed a linear function change trend with the growth of forest age,which could be described by the linear function equation y=ax+b(a>0).The analysis results showed that the root length density,average diameter and root tip number of P.cathayana were significantly correlated with the total biomass density of fine roots,and the root length density and average diameter had an extremely positive correlation with the total biomass density.[Conclusions]In the future,P.cathayana plantation should be properly tended to promote the development of fine roots and maximize its ecological benefits.展开更多
A comparison study was made for the characteristics of pH value, orga nic matter content, nutrient element N, P and K contents in rhizosphere soils of pure and mixed plantations of Manchurian walnut and Dahurian larc...A comparison study was made for the characteristics of pH value, orga nic matter content, nutrient element N, P and K contents in rhizosphere soils of pure and mixed plantations of Manchurian walnut and Dahurian larch and in bulk soils. The results show that the pH values of rhizosphere soil for all the plant ations except the pure walnut stand, which was slightly higher, were lower than those of bulk soils, while the organic matter contents in the rhizosphere soil f or all the plantations except the mixed plantation, which was slightly lower, we re higher than that in bulk soil. There exists a relative nitrogen accumulation in the rhizosphere and the extent to which the nitrogen accumulates is closely r elated to tree species and mixed pattern. As far as the total P and K contents a re considered, there exists a deficient tendency in rhizosphere in comparison wi th bulk soil. The element N, P and K are all mobilized in the rhizosphere of the pure or mixed plantation, characterized by the higher contents of the available N, P and K in the rhizosphere. The available N content in the rhizosphere of th e larch in mixed plantation was obviously higher than that of its pure plantatio n, whereas the available P and K contents in the rhizosphere of walnut in the mi xed plantation, on the other hand, were significantly higher than those of its p ure plantation.展开更多
The influence of formula fertilization optimization on dry rubber yield and economic benefits of the rubber plantation in Hainan Longjiang Farm were studied by using "contrast" design method of fertilizer field expe...The influence of formula fertilization optimization on dry rubber yield and economic benefits of the rubber plantation in Hainan Longjiang Farm were studied by using "contrast" design method of fertilizer field experiments. The results showed that the actual production rate reached 4.61% and the net production rate of dry rubber reached 3.97% by application of optimized fertilization formula. Analysis of variance showed that the average dry rubber yield in optimization of formula fertil- ization area was significantly higher than that of conventional area. The results also indicated that the optimization of formula fertilization had obvious economic benefits, and each rubber tree reduced cost and increased 9.95 yuan on average after the test.展开更多
Mixed-species plantations generally exhibit higher ecosystem multifunctionality than monospecific plantations.However,it is unclear how tree species functional composition influences species mixture effects on ecosyst...Mixed-species plantations generally exhibit higher ecosystem multifunctionality than monospecific plantations.However,it is unclear how tree species functional composition influences species mixture effects on ecosystem multifunctionality.We selected 171 monospecific and mixed-species plantations from nine regions across subtropical China,and quantified 13 key ecosystem functional properties to investigate how species mixture effects on ecosystem multifunctionality are modulated by functional diversity and identity.We found that ecosystem multifunctionality was significantly higher(p<0.05)in mixed tree plantations than in monospecific plantations except the mixed-conifer species plantations.Across all regions,ecosystem multifunctionality was significantly higher(p<0.05)in mixed conifer-broadleaf plantations than in monospecific plantations of the corresponding species,but not different between mixed and monospecific coniferous plantations.The magnitude of species mixture effects on ecosystem multifunctionality varied greatly with tree species compositions.Taking Cunninghamia lanceolata Lamb.as an example,the effects varied from a range of 2.0%–9.6%when mixed with a conifer species to 36%–87%when mixed with a broadleaf species.The functional diversity was the dominate driver shaping ecosystem multifunctionality,while functional identity,as expressed by community-weighted mean of specific leaf area,also had a positive effect on ecosystem multifunctionality through the increased below-ground nitrogen and phosphorus stocks regulated by specific leaf area of the mixing tree species.Our study highlights the important role of functional diversity in shaping ecosystem multifunctionality across region-wide environmental conditions.Mixed conifer-broadleaf tree plantations with distinct functional traits benefit the enhancement of ecosystem multifunctionality,and the magnitude of species mixture effects is modulated by the functional identity of tree species composition;those relationships deserve a special consideration in multifunctional management context of subtropical plantations.展开更多
An investigation on soil organic carbon, total N and P, NO3-N, available P, microbial biomass C, N and P, basal respiration and metabolic quotients (qCO2) was conducted to compare differences in soil microbial prope...An investigation on soil organic carbon, total N and P, NO3-N, available P, microbial biomass C, N and P, basal respiration and metabolic quotients (qCO2) was conducted to compare differences in soil microbial properties and nutrients between 15-year-old pure Chinese fir (Cunninghamia lanceolata) and two mixed Chinese fir plantations (mixed plantations with Alnus crernastogyne, mixed plantations with Kalopanax septemlobus) at Huitong Experimental Station of Forest Ecology (26°45′N latitude and 109°30′E longitude), Chinese Academy of Sciences in May, 2005. Results showed that the concentrations of soil organic carbon, total N, NO3^--N, total P and available P in mixed plantations were higher than that in pure plantation. Soil microbial biomass N in two mixed plantations was averagely higher 69% and 61% than that in pure plantation at the 0-10 cm and 10-20 cm soil depth, respectively. Soil microbial biomass C, P and basal respiration in mixed plantations were higher 11%, 14% and 4% at the 0-10 cm soil depth and 6%, 3% and 3% at the 10-20 cm soil depth compared with pure plantation. However, soil microbial C: N ratio and qCO2 were averagely lower 34% and 4% in mixed plantations than pure plantation. Additionally, there was a closer relation between soil microbial biomass and soil nutrients than between basal respiration, microbial C: N ratio and qCO2 and soil nutrients. In conclusion, introduction of broad-leaved tree species into pure coniferous plantation improved soil microbial properties and soil fertility, and can be helpful to restore degraded forest soil.展开更多
Mango is a commercial crop on Hainan Island,China,that is cultivated to develop the tropical rural economy.The development of accurate and up-to-date maps of the spatial distribution of mango plantations is necessary ...Mango is a commercial crop on Hainan Island,China,that is cultivated to develop the tropical rural economy.The development of accurate and up-to-date maps of the spatial distribution of mango plantations is necessary for agricultural monitoring and decision management by the local government.Pixel-based and object-oriented image analysis methods for mapping mango plantations were compared using two machine learning algorithms(support vector machine(SVM)and Random Forest(RF))based on Chinese high-resolution Gaofen-1(GF-1)imagery in parts of Hainan Island.To assess the importance of different features on classification accuracy,a combined layer of four original bands,32 gray-level co-occurrence(GLCM)texture indices,and 10 vegetation indices were used as input features.Then five different sets of variables(5,10,20,and 30 input variables and all 46 variables)were classified with the two machine learning algorithms at object-based level.Results of the feature optimization suggested that homogeneity and variance were very important variables for distinguishing mango plantations patches.The object-based classifiers could significantly improve overall accuracy between 2–7%when compared to pixel-based classifiers.When there were 5 and 10 input variables,SVM showed higher classification accuracy than RF,and when the input variables exceeded 20,RF showed better performances.After the accuracy achieved saturation points,there were only slightly classification accuracy improvements along with the numbers of feature increases for both of SVM and RF classifiers.The results indicated that GF-1 imagery can be successfully applied to mango plantation mapping in tropical regions,which would provide a useful framework for accurate tropical agriculture land management.展开更多
A study was conducted to determine the characters of soil structure in different water and soil conservation forests in Keshan County,northwest of Heilongjiang Province,China.The soil bulk density,the ratio of non-cap...A study was conducted to determine the characters of soil structure in different water and soil conservation forests in Keshan County,northwest of Heilongjiang Province,China.The soil bulk density,the ratio of non-capillary porosity and capillary porosity(NCP/CP),and the generalized soil structure index(GSSI) were measured for Fraxinus mandshurica,Larix gmelini,Pinus sylvestris var.mongolica,and Picea koraiensis plantations as well as the abandoned land(as control) adjacent to the forests in typical black soil region.Results show that at soil depth of 0–30cm,the soil bulk density of F.mandshurica forest and L.gmelini forest was lower than that of P.sylvestris var.mongolica forest and P.koraiensis forest,with the relative decrease of 8.04%–11.01%.The soil bulk density of L.gmelini forest was significantly different from that of the P.sylvestris var.mongolica forest and P.koraiensis forest.The NCP/CP values of the four types of plantations were all higher(59.75%–128.82% relatively) than that of abandoned land(p〈0.05),indicating that the soil aeration and permeability under forest were enhanced,especially under L.gmelini forest.GSSI values of the four types of forests were also relatively higher(2.98%–4.36%) than abandoned land(p〈0.05),indicating that those soil and water conservation forests,especially the F.mandshurica forest and P.koraiensis forest,can promote soil condition to approximate ideal soil structure.The result of this study can provide theoretical basis for scientifically evaluating the effects of vegetation restoration on soil quality in typical black soil region.展开更多
To explore the influence of meteorological variables on the growth of Korean pine(Pinus koraiensis Sieb.et Zucc.) plantations and provide a scientific reference for the production and management of Korean pine,three a...To explore the influence of meteorological variables on the growth of Korean pine(Pinus koraiensis Sieb.et Zucc.) plantations and provide a scientific reference for the production and management of Korean pine,three approaches to interpolate meteorological variables during the growing season(i.e.,May-September) were compared in Heilongjiang Province,China.Optimized meteorological variable interpolation results were then combined with stand and individual tree variables,based on data from 56 sample plots and 2886 sample trees from Korean pine plantations in two regions of the province to develop an individualtree diameter growth model(Model I) and an individualtree diameter growth model with meteorological variables(Model Ⅱ) using a stepwise regression method.Moreover,an individual-tree diameter growth model with regional effects(Model Ⅲ) was developed using dummy variables in the regression,and the significance of introducing these dummy variables was verified with an F-test statistical analysis.The models were validated using an independent data set,and the predictive performance of the three models was assessed via the adjusted coefficient of determination(R_(a)^(2)) and root mean square error(RMSE).The results suggest that the growth increment in tree diameter of Korean pine plantations was significantly correlated with the natural logarithm of initial diameter(ln D),stand basal area(BAS),logarithmic deformation of the stand density index(ln SDI),ratio of basal area of trees larger than the subject tree to their initial diameter at breast height(DBH)(BAL/D),and the maximum growingseason precipitation(Pgmax).The individual-tree diameter growth models of Korean pine plantations developed in this study will provide a good basis for estimating and predicting growth increments of Korean pine forests over larger areas.展开更多
Preventing and suppressing forest fires is one of the main tasks of forestry agencies to reduce resource loss and requires a thorough understanding of the importance of factors affecting their occurrence.This study wa...Preventing and suppressing forest fires is one of the main tasks of forestry agencies to reduce resource loss and requires a thorough understanding of the importance of factors affecting their occurrence.This study was carried out in forest plantations on Maoer Mountain in order to develop models for predicting the moisture content of dead fine fuel using meteorological and soil variables.Models by Nelson(Can J For Res 14:597-600,1984)and Van Wagner and Pickett(Can For Service 33,1985)describing the equilibrium moisture content as a function of relative humidity and temperature were evaluated.A random forest and generalized additive models were built to select the most important meteorological variables affecting fuel moisture content.Nelson’s(Can J For Res 14:597-600,1984)model was accurate for Pinus koraiensis,Pinus sylvestris,Larix gmelinii and mixed Larix gmelinii—Ulmus propinqua fuels.The random forest model showed that temperature and relative humidity were the most important factors affecting fuel moisture content.The generalized additive regression model showed that temperature,relative humidity and rain were the main drivers affecting fuel moisture content.In addition to the combined effects of temperature,rainfall and relative humidity,solar radiation or wind speed were also significant on some sites.In P.koraiensis and P.sylvestris plantations,where soil parameters were measured,rain,soil moisture and temperature were the main factors of fuel moisture content.The accuracies of the random forest model and generalized additive model were similar,however,the random forest model was more accurate but underestimated the effect of rain on fuel moisture.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.41701296 and 42277481)the Natural Science Foundation of Gansu Province (GrantNo.22JR5RA058)the Youth Science and Technology Fund Program of Gansu Province (Grant No.22JR5RA087).
文摘Interest in the dynamics of soil respiration(R_(S))in subalpine forest ecosystems is increasing due to their high soil carbon density and potential sensitivity to environmental changes.However,as a principal silvicultural practice,the long-term impacts of thinning on R_(S) and its heterotrophic and autotrophic respiration components(R_(h) and Ra,respectively)in subalpine plantations are poorly understood,espe-cially in winter.A 3-year field observation was carried out with consideration of winter CO_(2) efflux in middle-aged sub-alpine spruce plantations in northwestern China.A trench-ing method was used to explore the long-term impacts of thinning on Rs,Rn and R_(a).Seventeen years after thinning,mean annual Rs,Rn and R_(a) increased,while the contribu-tion of R_(h) to R_(s) decreased with thinning intensity.Thinning significantly decreased winter R,because of the reduction in R_(n) but had no significant effect on Ra.The temperature sensitivity(Q_(10))of R_(h) and R_(a) also increased with thinning intensity,with lower Q_(10) values for R_(h)(2.1-2.6)than for Ra(2.4-2.8).The results revealed the explanatory variables and pathways related to R_(n) and R_(a) dynamics.Thinning increased soil moisture and nitrate nitrogen(NO_(3)^(-)-N),and the enhanced nitrogen and water availability promoted R_(h) and R_(a) by improving fine root biomass and microbial activity.Our results highlight the positive roles of NO_(3)^(-)-N in stimulating R_(s) components following long-term thinning.Therefore,applications of nitrogen fertilizer are not recommended while thinning subalpine spruce plantations from the perspective of reducing soil CO_(2) emissions.The increased Q_(10) values of R_(s) components indicate that a large increase in soil CO_(2) emissions would be expected following thinning because of more pronounced climate warming in alpineregions.
文摘Hot arid zones represent vital reservoirs of unique species and ecosystems,holding significant importance for biodiversity.This study aimed to explore the plant diversity associated with tree plantations in urban ecosystems under hyper-arid climatic conditions in the Sahara Desert of Algeria.In May 2022,30 quadrats measuring 1 m^(2) each were established at the base of Phoenix dactylifera,Leucaena leucocephala,and Tamarix aphylla,corresponding to the dominant tree species in each of three plantations.In each quadrat,the plant quantitative inventory was conducted to measure plant diversity and similarity among the studied plantations.Based on this,we assessed the plant functional traits and rarity/abundance status of the flora.The findings revealed a diverse flora associated with the studied plantations,comprising 29 plant species grouped into 27 genera and 12 families.Notably,Poaceae(accounting for 30.8% of the flora),Asteraceae(25.0%),and Zygophyllaceae(21.6%)were well-represented.With an overall density of approximately 555 individuals/m^(2),Zygophyllum album(120 individuals/m^(2))and Polypogon monspeliensis(87 individuals/m^(2))emerged as the most abundant species.Functional trait analysis underscored the pivotal role of therophytes(constituting over 50.0% of the flora)and anemochorous species(33.0%-62.5%).Phytogeographic analysis emphasized the prevalence of the Saharo-Arabic element(constituting over 31.0% of the flora)and the Mediterranean Saharo-Arabic element(9.5%-21.5%).The Cosmopolitan element thrived under disturbance factors,recording percentages from 13.0% to 20.0% of the plant community.The rarity/abundance status of the flora emphasized the significance of rare,common,and very common species in the studied plantations.These findings could provide fundamental data for the effective control and management of biodiversity in hot hyper-arid urban ecosystems.
基金supported by the National Natural Science Foundation of China(Grants 31971463,31930078)the National Key R&D Program of China(Grant 2021YFD2200402)the Chinese Academy of Forestry(Grant CAFYBB2020ZA001).
文摘Different chemical compositions of soil organic carbon(SOC)affect its persistence and whether it signifi-cantly differs between natural forests and plantations remains unclear.By synthesizing 234 observations of SOC chemical compositions,we evaluated global patterns of concentra-tion,individual chemical composition(alkyl C,O-alkyl C,aromatic C,and carbonyl C),and their distribution even-ness.Our results indicate a notably higher SOC,a markedly larger proportion of recalcitrant alkyl C,and lower easily decomposed carbonyl C proportion in natural forests.How-ever,SOC chemical compositions were appreciably more evenly distributed in plantations.Based on the assumed con-ceptual index of SOC chemical composition evenness,we deduced that,compared to natural forests,plantations may have higher possible resistance to SOC decomposition under disturbances.In tropical regions,SOC levels,recalcitrant SOC chemical composition,and their distributed evenness were significantly higher in natural forests,indicating that SOC has higher chemical stability and possible resistance to decomposition.Climate factors had minor effects on alkyl C in forests globally,while they notably affected SOC chemi-cal composition in tropical forests.This could contribute to the differences in chemical compositions and their distrib-uted evenness between plantations and natural stands.
基金financially supported by the National Natural Science Foundation of China(31901093,32220103010,32192431,31722013)National Key R&D Program of China(2020YFA0608100,2022YFF1302505)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(ZDBS-LY-DQC019)。
文摘Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An important species for afforestation in dry environments of northern China,Mongolian pine(Pinus sylvestris var.mongolica Litv.)has recently exhibited growth decline and dieback on many sites,particularly pronounced in old-growth plantations.However,changes in response to drought stress by this species with age as well as the underlying mechanisms are poorly understood.In this study,tree-ring data and remotely sensed vegetation data were combined to investigate variations in growth at individual tree and stand scales for young(9-13 years)and aging(35-52 years)plantations of Mongolian pine in a water-limited area of northern China.A recent decline in tree-ring width in the older plantation also had lower values in satellited-derived normalized difference vegetation indices and normalized difference water indices relative to the younger plantations.In addition,all measured growth-related metrics were strongly correlated with the self-calibrating Palmer drought severity index during the growing season in the older plantation.Sensitivity of growth to drought of the older plantation might be attributed to more severe hydraulic limitations,as reflected by their lower sapwood-and leaf-specific hydraulic conductivities.Our study presents a comprehensive view on changes of growth with age by integrating multiple methods and provides an explanation from the perspective of plant hydraulics for growth decline with age.The results indicate that old-growth Mongolian pine plantations in water-limited environments may face increased growth declines under the context of climate warming and drying.
文摘Tropical forests provide several ecosystem services and functions and support approximately two-thirds of the world’s biodiversity but are seriously threatened by deforestation.Approaches to counteract this menace have revolved around aff orestation with several or a single tree species.We thus investigated how plantation forests with either a single or several tree species infl uenced arthropod taxonomic and community composition using pitfall traps to sample selected groups of epigeal arthropods(Araneae,Coleoptera,Orthoptera and Hymenoptera)and with environmental variables assessed simultaneously.Our results revealed 54 taxonomic groups with signifi cantly higher taxonomic richness,activity density,and diversity in the mixed stands than in the monoculture stands.The significant differences in community composition were mainly driven by families including Lycosidae,Formicidae,Staphylinidae,Scotylidae,Hydrophilidae,Gryllidae and Scarabaeidae and were explained by distinct habitat characteristics(canopy openness,litter depth,deadwood volume,and tree height).While the diverse tree communities and heterogeneous vegetation structure off ered food and habitat resources for diverse arthropod groups,the allelopathic nature coupled with homogenous stand characteristics of the Tectona grandis stands in the monoculture suppressed the growth of understorey vegetation that could otherwise serve as food and habitat resources for arthropods,which might have led to limited activities and diversity of arthropods in the monoculture plantation stands.The fi ndings thus highlight the need to promote mixed tree plantations in degraded tropical areas,especially when restoring biodiversity is the prime management focus.
文摘Oil palm is cultivated by agro-industries and smallholders for vegetable oil production. Good farm management practices with balanced soil and plant macronutrients are needed to attain optimum yields. Smallholder oil palm farmers of Dibombari Sub-Division, Cameroon, suffer from low on farm yields which could emanate from the agronomic practices implemented, which also has an influence on the soil and plant macronutrient status. This study provides information on the agronomic practices, soil and plant macronutrients status in smallholder oil palm fields. Structured questionnaires were administered to 200 farmers to collect data on their agronomic practices, using a stratified random sampling design. Soil and plants were sampled from plantations of different age groups (control, >0 - 4 years, >4 - 8 years and >8 - 15 years’ plantations) in four locations of the Sub-Division (i.e. Dibombari-central, Bonamateke, Bomono and Nkapa) using a randomized complete block design. Data collected, was analyzed using descriptive and inferential statistics. The results showed that 65% of farmers planted Tenera variety, with majority of them below the standards for weeding (81%), fertilizer use (100%), pruning (62%), pest/disease control (90.5%) and harvesting (96%) practices. Soil macronutrients were low across the different plantations except P which was optimal at >0 - 4 years and >4 - 8 years’ plantations but low at >8 - 15 years’ plantation. Similarly, for plant macronutrients, N and P were optimal across the different plantations, while K and Mg were optimal at >0 - 4 years’ plantation but low at >4 - 8 years and >8 - 15 years’ plantations. Thus, agronomic practices and macronutrient status of soil and plants were below standards in smallholder oil palm plantations of Dibombari, leading to low yields of fresh fruit bunches.
基金supported by the National Natural Science Foundation of China[32101511]the Chinese Universities Scientific Fund[2452020137]and[2452021073]the Natural Science Basic Research Program of Shaanxi[2021JQ-155]。
文摘Black locust(Robinia pseudoacacia L.)plantations have contributed significantly to soil and water conservation and ecological reconstruction on China’s Loess Plateau.Understanding the impact of stand and environment on species composition of understory woody plants will improve the stability of existing black locust plantations.Ten stands were selected in second-generation black locust plantations in tableland and gully areas of the Loess Plateau.The number of understory tree species in the tablelands was significantly lower than in the gully stands.Regenerated black locust(19.76%)and Rubus corchorifolius L.f.(64.85%)were the most abundant understory tree and shrub species,respectively,in the tableland stands;Broussonetia papyrifera(L.)L’Hér.ex Vent.(6.77%)and Acanthopanax senticosus(Rupr.Maxim.)Harms.(37.22%)were most abundant in the gully stands.Species richness(S),Shannon diversity(H),and evenness index(J)of the understory plants were significantly lower in the tableland stands than in the gully stands.More diverse understory species and community structures occurred in the gully stands.Differences in species diversity among landform positions may be attributed to differences in soil moisture.In addition,77.57%of the variation in understory species composition was explained,among which shrub and herb coverage,stand age,leaf area index,slope and total soil phosphorus in the 10-20 cm layer were the main factors.Soil organic carbon and total potassium significantly impacted S,H and J.Considering the environmental conditions and the biological characteristics of the plants investigated,R.corchorifolius should be given priority in the development of tableland stands,while B.papyrifera and Celtis sinensis Pers.should form mixed forests with black locust in gully stands.This management could promote biodiversity and stability of the existing black locust plantations but also optimize regional landscape patterns.
基金supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(Grant Number 19H03008).
文摘Oil palm plantations have dramatically expanded in tropical Asia over the past decades.Although their establishment has been projected to increase nitrous oxide(N_(2)O)emissions,earlier reports have shown inconsistent results.This study analyzed these previously published data to compare N_(2)O emissions in oil palm plantations to reference forests.A linear mixed-eff ects model was used to examine the signifi cance of the eff ect of establishing oil palm plantations on N_(2)O emissions,rather than to calculate mean eff ect sizes because of limitations in the data structure.The results indicated that N_(2)O emissions were signifi cantly greater from oil palm plantations than from reference forests,as expected.This is the fi rst study to report the eff ect of oil palm plantations on N_(2)O emissions by synthesizing previously published data.To quantify the size of this eff ect,additional studies with frequent and long-term monitoring data are needed.
基金supported by Natural Science Basic Research Program of Shaanxi(2021JQ-155)National Natural Science Foundation of China(32101511)Chinese Universities Scientific Fund(2452020137 and 2452021073)。
文摘Background:Chinese pine(Pinus tabuliformis Carr.)is one of the major afforestation species in northern China and plays a key role in restoring forest ecosystems and preserving soil and water.However,most Chinese pine plantations are experiencing ecological problems such as the low diversity of understory plants and difficulty in natural regeneration.Thinning has been widely used to maintain and improve a variety of forest ecosystem services from plantations.To date,however,few studies have been conducted to systematically determine the effects of thinning on understory plant diversity and the regeneration of Chinese pine in plantations.Methods:We conducted a literature search,and selected 22 publications covering a total of 83 treatments related to thinning effects on the species richness of understory plants and 15 publications covering a total of 43 treatments related to thinning effects on the regeneration of Chinese pine,in tree plantations of northern China.The data from the literature were synthesized and evaluated with meta-analysis approach to determine the treatment effects.Results:Compared with the control stands,thinning increased the species richness of shrubs and herbs by an average of 25.3%and 26.5%,respectively.While the varying thinning intensities all had significantly positive effects on the species richness of understory plants,only moderate thinning(30%–50%)had a positive effect on the density of regenerating seedlings and saplings of Chinese pine(60.2%).The species richness of understory plants was greatest after 14 years of thinning with an increase of 36.3%,whereas the density of regenerating Chinese pine seedlings and saplings reached a maximum after≥11 years of thinning with an increase of 76.5%,compared to that of the unthinned stands.Thinning in the half-mature plantations had the greatest effects on the understory shrub richness(44.1%)and the density of regenerating Chinese pine seedlings and saplings(86.5%).Both single and multiple thinning were found to significantly promote the species richness of understory plants and the density of regenerating Chinese pine seedlings and saplings,and the positive effects of thinning were greater in areas with a humidity index(HI)<30 than in areas with an HI≥30.In general,age group,planting density and recovery time were prominent factors affecting the species richness of understory plants,whereas the slope,HI and recovery time were the dominant controls of the density of regenerating Chinese pine seedlings and saplings,indicating differential effects of thinning on the species richness of understory plants and the regeneration capacity of Chinese pine in plantations.Conclusion:Thinning appears to be a feasible management measure to improve the understory plant diversity and regeneration capacity of Chinese pine in plantations.We postulate that moderate thinning in half-mature forest stands with an HI<30 can help effectively promote the species diversity of understory plants and the natural regeneration of Chinese pine,thereby maintaining a more resilient stand structure and the development of Chinese pine plantations.
基金National Natural Science Foundation of China(No.41830110)National Key Research Development Program of China(No.2018YFC1503603)+2 种基金Key Laboratory of Land Satellite Remote Sensing Application,Ministry of Natural Resources of the People’s Republic of China(No.KLSMNR-202106)Water Conservancy Science and Technology Project of Jiangsu Province,China(No.2020061)Natural Science Foundation of Jiangsu Province,China(No.20180779)。
文摘As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distribution area is extremely complex,with a variety of vegetation types.In addition,tea distribution is scattered and fragmentized in most of China.Therefore,it is difficult to obtain accurate tea information based on coarse resolution remote sensing data and existing feature extraction methods.This study proposed a boundary-enhanced,object-oriented random forest method on the basis of high-resolution GF-2 and multi-temporal Sentinel-2 data.This method uses multispectral indexes,textures,vegetable indices,and variation characteristics of time-series NDVI from the multi-temporal Sentinel-2 imageries to obtain abundant features related to the growth of tea plantations.To reduce feature redundancy and computation time,the feature elimination algorithm based on Mean Decrease Accuracy(MDA)was used to generate the optimal feature set.Considering the serious boundary inconsistency problem caused by the complex and fragmented land cover types,high resolution GF-2 image was segmented based on the MultiResolution Segmentation(MRS)algorithm to assist the segmentation of Sentinel-2,which contributes to delineating meaningful objects and enhancing the reliability of the boundary for tea plantations.Finally,the object-oriented random forest method was utilized to extract the tea information based on the optimal feature combination in the Jingmai Mountain,Yunnan Province.The resulting tea plantation map had high accuracy,with a 95.38%overall accuracy and 0.91 kappa coefficient.We conclude that the proposed method is effective for mapping tea plantations in high heterogeneity mountainous areas and has the potential for mapping tea plantations in large areas.
基金Supported by the Project of the Basic Research Operation Cost of State Level Research Institutes "Long-term Location Investigation of Basic Data for Rubber Production " ( XJSYWFZX-2008-14 and XJSYWFZX-2007-2)the Project Natural Sciences Fund of Hainan Province (807045)~~
文摘[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to evaluate the ecological benefits of rubber plantations and provide basic data for studying the effect of tropical land utilization/cover change on the global carbon and nitrogen cycle. [Method]The situs was in Danzhou city,western region of Hainan Island,and the samples were four kinds of rubber plantations soil at different ages and one kind of control check (pepper,Piper nigrum L.) soil. In this research,four quadrats were set up in each sample,and the size of each was 20 cm×20 cm. Four specimens were gathered from four layers of 0-15,15-30,30-45,45-60,and the average of them was the last analysis result of each sample. Soil density was measured by cutting ring method,soil containing and hygroscopic water was detected by oven drying method,soil organic carbon (SOC) was measured by low temperature heated outside potassium dichromate oxidation-colorimetry method,and soil total nitrogen (STN) was detected by semimicro Kjeldahl method. [Result]SOC contents of different layers in rubber plantations soil at different age stages (including the CK pepper soil,the same as below) varied little,and the content of SOC in surface layer (0-15 cm) was higher,while the underlayer (45-60 cm) was lower than the average value; there was significant difference in SOC content among different kinds of soil,and the content was of 6.03-7.78 g/kg,tapping young trees (7 years) CK pepper mature age trees (30 years) prophase of young trees (2 years) tapping trees (16 years); there was no significant difference in SOC storage among different kinds of soil,and the storage was of 61.33-74.29 t/hm2,mature age trees (30 years) tapping young trees (7 years) prophase of young trees (2 years) CK pepper tapping trees (16 years); there was significant difference in STN content among rubber plantations soil at different age stages,the content was of 410.86-664.14 mg/kg2,CK pepper tapping young trees (7 years) prophase of young trees (2 years) mature age trees (30 years) tapping trees (16 years),and STN content of tapping trees (16 years) soil was extremely lowest; there was significant difference in C/N ratio among different kinds of soil,the ratio was of 10.94-14.47,and the ratio of tapping trees (16 years) mature age trees (30 years) tapping young trees (7 years) CK pepper prophase of young trees (2 years). [Conclusion]There wasn't unhealthy effect of rubber trees planted in tropical area on the content and storage of SOC,the content of STN and the ratio of C/N. there was no significant difference between rubber plantations and CK pepper soil,and the effects of rubber plantation on soil carbon-nitrogen was similar to that of other tropical crops (such as pepper).
文摘[Objectives]The paper was to study the fine root distribution characteristics of Populus cathayana plantations at different ages in alpine sandy land.[Methods]With 5,10,15,20,and 25 years old P.cathayana plantation in the eastern margin of Gonghe Basin,Qinghai Province as the research objects,fine roots were collected by root core drilling method,and the differences of fine root biomass,root length density,average diameter and root tip number at the soil depths of 0-20,20-40,40-60,60-80 and 80-100 cm were analyzed.[Results]The total biomass density of P.cathayana plantation was mainly distributed in the soil layer of 0-60 cm,accounting for 76%of the entire soil layer,and its value increased with the increase in forest age.With the increase in different forest ages,the root length density,average diameter and root tip number of living fine roots in the soil layer of 0-60 cm accounted for 74%-81%of the entire soil layer,and the proportions in the soil layers of 60-80 and 80-100 cm were 9%-11%.The biomass density,root length density,average diameter and root tip number of living and dead fine roots of P.cathayana plantation increased with the increase of forest age.The root length density,average diameter and root tip number of P.cathayana fine roots showed a linear function change trend with the growth of forest age,which could be described by the linear function equation y=ax+b(a>0).The analysis results showed that the root length density,average diameter and root tip number of P.cathayana were significantly correlated with the total biomass density of fine roots,and the root length density and average diameter had an extremely positive correlation with the total biomass density.[Conclusions]In the future,P.cathayana plantation should be properly tended to promote the development of fine roots and maximize its ecological benefits.
基金Hundred Scientists" Project of Ch inese Academy of Sciences.
文摘A comparison study was made for the characteristics of pH value, orga nic matter content, nutrient element N, P and K contents in rhizosphere soils of pure and mixed plantations of Manchurian walnut and Dahurian larch and in bulk soils. The results show that the pH values of rhizosphere soil for all the plant ations except the pure walnut stand, which was slightly higher, were lower than those of bulk soils, while the organic matter contents in the rhizosphere soil f or all the plantations except the mixed plantation, which was slightly lower, we re higher than that in bulk soil. There exists a relative nitrogen accumulation in the rhizosphere and the extent to which the nitrogen accumulates is closely r elated to tree species and mixed pattern. As far as the total P and K contents a re considered, there exists a deficient tendency in rhizosphere in comparison wi th bulk soil. The element N, P and K are all mobilized in the rhizosphere of the pure or mixed plantation, characterized by the higher contents of the available N, P and K in the rhizosphere. The available N content in the rhizosphere of th e larch in mixed plantation was obviously higher than that of its pure plantatio n, whereas the available P and K contents in the rhizosphere of walnut in the mi xed plantation, on the other hand, were significantly higher than those of its p ure plantation.
基金Supported by Key Science and Technology Project of Hainan Land Reclamation Bureau([2009]57)~~
文摘The influence of formula fertilization optimization on dry rubber yield and economic benefits of the rubber plantation in Hainan Longjiang Farm were studied by using "contrast" design method of fertilizer field experiments. The results showed that the actual production rate reached 4.61% and the net production rate of dry rubber reached 3.97% by application of optimized fertilization formula. Analysis of variance showed that the average dry rubber yield in optimization of formula fertil- ization area was significantly higher than that of conventional area. The results also indicated that the optimization of formula fertilization had obvious economic benefits, and each rubber tree reduced cost and increased 9.95 yuan on average after the test.
基金funded by the National Natural Science Foundation of China (No. 31930078)the National Key Research and Development Program of China (No. 2021YFD2200405)
文摘Mixed-species plantations generally exhibit higher ecosystem multifunctionality than monospecific plantations.However,it is unclear how tree species functional composition influences species mixture effects on ecosystem multifunctionality.We selected 171 monospecific and mixed-species plantations from nine regions across subtropical China,and quantified 13 key ecosystem functional properties to investigate how species mixture effects on ecosystem multifunctionality are modulated by functional diversity and identity.We found that ecosystem multifunctionality was significantly higher(p<0.05)in mixed tree plantations than in monospecific plantations except the mixed-conifer species plantations.Across all regions,ecosystem multifunctionality was significantly higher(p<0.05)in mixed conifer-broadleaf plantations than in monospecific plantations of the corresponding species,but not different between mixed and monospecific coniferous plantations.The magnitude of species mixture effects on ecosystem multifunctionality varied greatly with tree species compositions.Taking Cunninghamia lanceolata Lamb.as an example,the effects varied from a range of 2.0%–9.6%when mixed with a conifer species to 36%–87%when mixed with a broadleaf species.The functional diversity was the dominate driver shaping ecosystem multifunctionality,while functional identity,as expressed by community-weighted mean of specific leaf area,also had a positive effect on ecosystem multifunctionality through the increased below-ground nitrogen and phosphorus stocks regulated by specific leaf area of the mixing tree species.Our study highlights the important role of functional diversity in shaping ecosystem multifunctionality across region-wide environmental conditions.Mixed conifer-broadleaf tree plantations with distinct functional traits benefit the enhancement of ecosystem multifunctionality,and the magnitude of species mixture effects is modulated by the functional identity of tree species composition;those relationships deserve a special consideration in multifunctional management context of subtropical plantations.
基金This study was supported by Chinese Academy of Science Program (KZCX2-YW-405)the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘An investigation on soil organic carbon, total N and P, NO3-N, available P, microbial biomass C, N and P, basal respiration and metabolic quotients (qCO2) was conducted to compare differences in soil microbial properties and nutrients between 15-year-old pure Chinese fir (Cunninghamia lanceolata) and two mixed Chinese fir plantations (mixed plantations with Alnus crernastogyne, mixed plantations with Kalopanax septemlobus) at Huitong Experimental Station of Forest Ecology (26°45′N latitude and 109°30′E longitude), Chinese Academy of Sciences in May, 2005. Results showed that the concentrations of soil organic carbon, total N, NO3^--N, total P and available P in mixed plantations were higher than that in pure plantation. Soil microbial biomass N in two mixed plantations was averagely higher 69% and 61% than that in pure plantation at the 0-10 cm and 10-20 cm soil depth, respectively. Soil microbial biomass C, P and basal respiration in mixed plantations were higher 11%, 14% and 4% at the 0-10 cm soil depth and 6%, 3% and 3% at the 10-20 cm soil depth compared with pure plantation. However, soil microbial C: N ratio and qCO2 were averagely lower 34% and 4% in mixed plantations than pure plantation. Additionally, there was a closer relation between soil microbial biomass and soil nutrients than between basal respiration, microbial C: N ratio and qCO2 and soil nutrients. In conclusion, introduction of broad-leaved tree species into pure coniferous plantation improved soil microbial properties and soil fertility, and can be helpful to restore degraded forest soil.
基金This research was funded by the Opening Foundation Program of Land Use Key Laboratory of the Ministry of Natural Resources of China,the Hainan Provincial Key Laboratory of Practical Research on Tropical Crops Information Technology,China(RDZWKFJJ2019001)the Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences(1630072020006,1630072017004 and 1630072019001)+2 种基金the Natural Science Foundation of Hainan,China(619MS100)the National Natural Science Foundation of China(31601211)the Demonstration and Pilot Projects for Comprehensive Rural Reform,China(XXSNZG19-02).
文摘Mango is a commercial crop on Hainan Island,China,that is cultivated to develop the tropical rural economy.The development of accurate and up-to-date maps of the spatial distribution of mango plantations is necessary for agricultural monitoring and decision management by the local government.Pixel-based and object-oriented image analysis methods for mapping mango plantations were compared using two machine learning algorithms(support vector machine(SVM)and Random Forest(RF))based on Chinese high-resolution Gaofen-1(GF-1)imagery in parts of Hainan Island.To assess the importance of different features on classification accuracy,a combined layer of four original bands,32 gray-level co-occurrence(GLCM)texture indices,and 10 vegetation indices were used as input features.Then five different sets of variables(5,10,20,and 30 input variables and all 46 variables)were classified with the two machine learning algorithms at object-based level.Results of the feature optimization suggested that homogeneity and variance were very important variables for distinguishing mango plantations patches.The object-based classifiers could significantly improve overall accuracy between 2–7%when compared to pixel-based classifiers.When there were 5 and 10 input variables,SVM showed higher classification accuracy than RF,and when the input variables exceeded 20,RF showed better performances.After the accuracy achieved saturation points,there were only slightly classification accuracy improvements along with the numbers of feature increases for both of SVM and RF classifiers.The results indicated that GF-1 imagery can be successfully applied to mango plantation mapping in tropical regions,which would provide a useful framework for accurate tropical agriculture land management.
基金supported by National Natural Science Foundation of China (No 30872068)the Science and Technology Key Scientific Project of Heilongjiang Province (GA06B302-3)Fund of Thesis for Post Graduated Student of NEFU(GRAM09)
文摘A study was conducted to determine the characters of soil structure in different water and soil conservation forests in Keshan County,northwest of Heilongjiang Province,China.The soil bulk density,the ratio of non-capillary porosity and capillary porosity(NCP/CP),and the generalized soil structure index(GSSI) were measured for Fraxinus mandshurica,Larix gmelini,Pinus sylvestris var.mongolica,and Picea koraiensis plantations as well as the abandoned land(as control) adjacent to the forests in typical black soil region.Results show that at soil depth of 0–30cm,the soil bulk density of F.mandshurica forest and L.gmelini forest was lower than that of P.sylvestris var.mongolica forest and P.koraiensis forest,with the relative decrease of 8.04%–11.01%.The soil bulk density of L.gmelini forest was significantly different from that of the P.sylvestris var.mongolica forest and P.koraiensis forest.The NCP/CP values of the four types of plantations were all higher(59.75%–128.82% relatively) than that of abandoned land(p〈0.05),indicating that the soil aeration and permeability under forest were enhanced,especially under L.gmelini forest.GSSI values of the four types of forests were also relatively higher(2.98%–4.36%) than abandoned land(p〈0.05),indicating that those soil and water conservation forests,especially the F.mandshurica forest and P.koraiensis forest,can promote soil condition to approximate ideal soil structure.The result of this study can provide theoretical basis for scientifically evaluating the effects of vegetation restoration on soil quality in typical black soil region.
基金funded partly by the National Key Research and Development Program of China (Project No.2017YFD0600601-01-04)the Fundamental Research Funds for the Central Universities (2572019CP15)。
文摘To explore the influence of meteorological variables on the growth of Korean pine(Pinus koraiensis Sieb.et Zucc.) plantations and provide a scientific reference for the production and management of Korean pine,three approaches to interpolate meteorological variables during the growing season(i.e.,May-September) were compared in Heilongjiang Province,China.Optimized meteorological variable interpolation results were then combined with stand and individual tree variables,based on data from 56 sample plots and 2886 sample trees from Korean pine plantations in two regions of the province to develop an individualtree diameter growth model(Model I) and an individualtree diameter growth model with meteorological variables(Model Ⅱ) using a stepwise regression method.Moreover,an individual-tree diameter growth model with regional effects(Model Ⅲ) was developed using dummy variables in the regression,and the significance of introducing these dummy variables was verified with an F-test statistical analysis.The models were validated using an independent data set,and the predictive performance of the three models was assessed via the adjusted coefficient of determination(R_(a)^(2)) and root mean square error(RMSE).The results suggest that the growth increment in tree diameter of Korean pine plantations was significantly correlated with the natural logarithm of initial diameter(ln D),stand basal area(BAS),logarithmic deformation of the stand density index(ln SDI),ratio of basal area of trees larger than the subject tree to their initial diameter at breast height(DBH)(BAL/D),and the maximum growingseason precipitation(Pgmax).The individual-tree diameter growth models of Korean pine plantations developed in this study will provide a good basis for estimating and predicting growth increments of Korean pine forests over larger areas.
基金the National Key Research and Development Program of ChinaKey Projects for Strategic International Innovative Cooperation in Science and Technology(2018YFE0207800)+1 种基金Fundamental Research Funds for the Central Universities(2572019BA03)partly by the China Scholarship Council(CSC No.2016DFH417)。
文摘Preventing and suppressing forest fires is one of the main tasks of forestry agencies to reduce resource loss and requires a thorough understanding of the importance of factors affecting their occurrence.This study was carried out in forest plantations on Maoer Mountain in order to develop models for predicting the moisture content of dead fine fuel using meteorological and soil variables.Models by Nelson(Can J For Res 14:597-600,1984)and Van Wagner and Pickett(Can For Service 33,1985)describing the equilibrium moisture content as a function of relative humidity and temperature were evaluated.A random forest and generalized additive models were built to select the most important meteorological variables affecting fuel moisture content.Nelson’s(Can J For Res 14:597-600,1984)model was accurate for Pinus koraiensis,Pinus sylvestris,Larix gmelinii and mixed Larix gmelinii—Ulmus propinqua fuels.The random forest model showed that temperature and relative humidity were the most important factors affecting fuel moisture content.The generalized additive regression model showed that temperature,relative humidity and rain were the main drivers affecting fuel moisture content.In addition to the combined effects of temperature,rainfall and relative humidity,solar radiation or wind speed were also significant on some sites.In P.koraiensis and P.sylvestris plantations,where soil parameters were measured,rain,soil moisture and temperature were the main factors of fuel moisture content.The accuracies of the random forest model and generalized additive model were similar,however,the random forest model was more accurate but underestimated the effect of rain on fuel moisture.