A dynamically tunable multiband plasmon-induced transparency(PIT) effect in a series of rectangle cavities coupled with a graphene nanoribbon waveguide system is investigated theoretically and numerically by tuning th...A dynamically tunable multiband plasmon-induced transparency(PIT) effect in a series of rectangle cavities coupled with a graphene nanoribbon waveguide system is investigated theoretically and numerically by tuning the Fermi level of the graphene rectangle cavity. A single-PIT effect is realized using two different methods: one is the direct destructive interference between bright and dark modes, and the other is the indirect coupling through a graphene nanoribbon waveguide. Moreover, dual-PIT effect is obtained by three rectangle cavities side-coupled with a graphene nanoribbon waveguide.Results show that the magnitude of the dual-PIT window can be controlled between 0.21 and 0.74, and the corresponding group index is controlled between 143.2 and 108.6. Furthermore, the triple-PIT effect is achieved by the combination of bright–dark mode coupling and the cavities side-coupled with waveguide mechanism. Thus, sharp PIT windows can be formed, a high transmission is maintained between 0.51 and 0.74, and the corresponding group index is controlled between161.4 and 115.8. Compared with previously proposed graphene-based PIT effects, the size of the introduced structure is less than 0.5 μm2. Particularly, the slow light effect is crucial in the current research. Therefore, a novel approach is introduced toward the realization of optical sensors, optical filters, and slow light and light storage devices with ultra-compact,multiband, and dynamic tunable.展开更多
A graphene-based metamaterial for THz plasmon induced transparency(PIT) is presented and numerically studied in this paper, which consists of two horizontal graphene strips attached to a continuous vertical wire separ...A graphene-based metamaterial for THz plasmon induced transparency(PIT) is presented and numerically studied in this paper, which consists of two horizontal graphene strips attached to a continuous vertical wire separately. The calculated surface current distributions demonstrate that the distinct PIT window results from the near-field coupling of two bright modes. To explore the physical mechanism of PIT effect, we employ the coupled Lorentz oscillator model. The transmission spectra obtained with this model fits well with the simulation results. The performance of the PIT system can be controlled through the geometry parameters of graphene strips. Moreover, the transparency window can be dynamically tuned by varying the Fermi energy and the carrier mobility of the graphene strips. The slow light effect is also explored in our proposed structure and it can achieve 1.25 ps when Fermi energy is 1.3 eV. Finally, the position of the transmission window with the variation of the nearby medium refractive index is examined. Such a proposed graphene-based PIT system may have great potential applications in photonic devices.展开更多
Based on Dirac semimetal metamaterials,the tunable plasmon induced transparency(PIT)is investigated elaborately in this work.The designed unit cell consists of a strip and a square bracket,which is periodically aligne...Based on Dirac semimetal metamaterials,the tunable plasmon induced transparency(PIT)is investigated elaborately in this work.The designed unit cell consists of a strip and a square bracket,which is periodically aligned on the dielectric substrate.Our numerical results illustrate that a pronounced transparency window exists due to near field coupling between two bright modes,which can be dynamically tuned with Fermi energy.Namely,the transparency window demonstrates a distinct blue shift with a larger Fermi energy.Moreover,an on-to-off switch of the PIT transparency window is realized with different polarization angles.In addition,the accompanied slow light property is examined with the calculation of phase and group delay.Finally,a small variation of the refractive index of the substrate can induce a clear movement of the PIT transparency window which delivers a guidance in the application of optical sensing.Thus,this work provides us a new strategy to design compact and adjustable PIT devices and has potential applications in highly tunable optical switchers,sensors,and slow light devices.展开更多
We propose and numerically demonstrate a tunable plasmon-induced transparency(PIT) phenomenon based on asymmetric H-shaped graphene metamaterials. The tunable PIT effect is realized through varying the applied polariz...We propose and numerically demonstrate a tunable plasmon-induced transparency(PIT) phenomenon based on asymmetric H-shaped graphene metamaterials. The tunable PIT effect is realized through varying the applied polarization angles rather than changing the structure geometry. By simply adjusting the polarization angle, the transmission spectra can be controlled between the switch-on state and switch-off state. The physical mechanism of the induced transparency is revealed from magnetic dipole inductive coupling and phase coupling. Importantly, by varying the Fermi energy of the graphene or the refractive index of the substrate, the resonant position of the PIT can be dynamically controlled and the maximum modulation depths can reach up to 60.7%. The sensitivity(nm/RIU) of the graphene structure, which is the shift of resonance wavelength per unit change of refractive index, is 5619.56 nm/RIU. Moreover, we also extend our research to the x-axis symmetric H-shaped structure, and the tunable PIT transmission window can also be realized. The physical mechanism of the induced transparency is revealed from the electric dipole hybridization coupling. Our designed H-shaped graphene-based structures is a promising candidate for compact elements such as tunable sensors, switches and slow-light devices.展开更多
We numerically investigate a coupled-resonator structure consisting of a stub resonator and a nanodisk resonator using a two-dimensional finite element method. Simulation results show that plasmon-induced transparency...We numerically investigate a coupled-resonator structure consisting of a stub resonator and a nanodisk resonator using a two-dimensional finite element method. Simulation results show that plasmon-induced transparency (PIT) occurs in the transmission spectra, and the sharp asymmetric Fano lines increase the sensitivity to 1.4 ×10^3 nm/RIU. We also analyze the properties of the structure with different radii of the nanodisk and the length of the tooth cavity. Moreover, we find that the PIP only happens when the staggered system is around a fixed location with different separate distances, which is not similar to the previous researches. Our model may be important to photonic-integrated circuits and the sensitivity in sensors.展开更多
We theoretically study the effect of Kerr effect on the second-order nonlinearity induced transparency in a double-resonant optical cavity system.We show that in the presence of the Kerr effect,as the strength of the ...We theoretically study the effect of Kerr effect on the second-order nonlinearity induced transparency in a double-resonant optical cavity system.We show that in the presence of the Kerr effect,as the strength of the Kerr effect increases,the absorption curve exhibits an asymmetric-symmetric-asymmetric transition,and the zero absorption point shifts with the increase of the Kerr effect.Furthermore,by changing the strength of the Kerr effect,we can control the width of the transparent window,and the position of the zero-absorption point and meanwhile change the left and right width of the absorption peak.The asymmetry absorption curve can be employed to improve the quality factor of the cavity when the frequency detuning is tuned to be around the right peak.The simple dependence of the zeroabsorption point on the strength of Kerr effect suggests that the strength of Kerr effect can be measured by measuring the position of the zero-absorption point in a possible application.展开更多
We have studied the phenomenon of electromagnetically induced transparency(EIT) of ^87Rb vapor with a buffer gas in a magnetic field at room temperature. It is found that the spectral lines caused by the velocity se...We have studied the phenomenon of electromagnetically induced transparency(EIT) of ^87Rb vapor with a buffer gas in a magnetic field at room temperature. It is found that the spectral lines caused by the velocity selective optical pump effects get much weaker and wider when the sample cell is mixed with a 5-Torr N_2 gas while the EIT signal is kept almost unchanged. A weighted least-square fit is also developed to remove the Doppler broadening completely. This spectral method provides a way to measure the Zeeman splitting with high resolution, for example, the Λ-type EIT resonance splits into four peaks on the D_2 line of ^87Rb in the thermal 2-cm vapor cell with a magnetic field along the electric field of the linearly polarized coupling laser. The high-resolution spectrum can be used to lock the laser to a given frequency by tuning the magnetic field.展开更多
Plasmon induced transparency(PIT)in the transparent window provides new insights into the design of optical filters,switches and storage,and integrated optics.The slow light effect makes PIT applicable to both sensors...Plasmon induced transparency(PIT)in the transparent window provides new insights into the design of optical filters,switches and storage,and integrated optics.The slow light effect makes PIT applicable to both sensors and slow light devices.Besides,PIT can overcome the diffraction limit of light,which makes it possible to manipulate light on a half-wavelength scale and brings good news to the miniaturization of optical devices.In this paper,we first summarize the researches of PIT phenomenon based on metal-dielectric-metal(MDM)waveguide systems and analyze the physical mechanisms of PIT including bright-dark mode interactions and phase-coupling-induced transparency.Then,we review the applications of PIT in optical sensing,optical filtering,optical switching,slow light devices and optical logic devices.At last,we outline important challenges that need to be addressed,provide corresponding solutions and predict important directions for future research in this area.展开更多
Transparent conductive cadmium indium oxide films (CdIn2O4) were prepared by r.f. reactive sputtering from Cd-In alloy targets under an Ar-O2 atmosphere. Electrical conductivity of the order of 105Ω-1.m-1 and the opt...Transparent conductive cadmium indium oxide films (CdIn2O4) were prepared by r.f. reactive sputtering from Cd-In alloy targets under an Ar-O2 atmosphere. Electrical conductivity of the order of 105Ω-1.m-1 and the optical transmission as high as 94% are easily attained by postdeposition annealing treatment. The effects of oxygen concentration in the reactive gas mixture and post-deposition annealing treatment on the optical transmittance as well as optical parameters, such as refractive index (n), extinction coefficient (k), real part (ε') and imaginary part (ε') of the dielectric constant, were studied in the visible and near-infrared region. The highfrequency dielectric constant ε∞ the plasma frequency ωP, and the conduction band effective mass mc of different samples were also investigated展开更多
The influences of various kinds of UV-absorbers, antioxidants and their mixtures on UV-aging resis- tance of transparent unsaturated polyester FRP are studied by artificial aocelerating aging test.The results show tha...The influences of various kinds of UV-absorbers, antioxidants and their mixtures on UV-aging resis- tance of transparent unsaturated polyester FRP are studied by artificial aocelerating aging test.The results show that the UV-aging resistance of com- bined stabilizers is better than single stabilizer. It is concluded that the cooperative effect of UV -absorbers is caused bg the increase of wave leng- th and intensity of the absorption light the coopora- tive effect of UV-absorbers and antioxidants is caused by Dreventing the photo-oxidantion.展开更多
Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceram...Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceramics containing nanocrystals. The result shows that the local temperature of the nanocrystals embedded in glass matrices is much higher than the environmental temperature of the sample. It is suggested that the tempera,ture-dependent thermal energy induced by the light absorption must be considered when the theory of thermal transportation is applied to the study of local thermal effect.展开更多
The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in PffYIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic in...The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in PffYIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic insulator YIG blocking charge current and transmitting spin current via the magnon current. Therefore, the nonlocal voltage induced by an inverse spin Hall effect (ISHE) in FM can be detected. With the magnetization of FM parallel or antiparallel to the spin polarization of pure spin currents (σsc), the spin-independent nonlocal voltage is induced. This indicates that the spin transparency at the Cu/FM interface is spin-independent, which demonstrates that the influence of spin-dependent electro-chemical potential due to spin accumulation on the interfacial spin transparency is negligible. Furthermore, a larger spin Hall angle of Fe20Ni80 (Py) than that of Ni is obtained from the nonlocal voltage measurements.展开更多
This paper presents the substrate temperature dependence of opto-electrical properties for transparent conducting Al-doped ZnO films prepared on polyisocyanate (PI) substrates by r f sputtering. Polycrystalline ZnO:Al...This paper presents the substrate temperature dependence of opto-electrical properties for transparent conducting Al-doped ZnO films prepared on polyisocyanate (PI) substrates by r f sputtering. Polycrystalline ZnO:Al films with good adherence to the substrates having a (002) preferred orientation have been obtained with resistivities in the range from 4.1×10-3to 5.3×104 Ωcm, carrier densities more than 2.6×1020 cm-3 and Hall mobilities between 5.78 and 13.11 cm2/V/s for films. The average transmittance reaches 75% in the visible spectrum. The quality of obtained films depends on substrate temperature during film fabrication.展开更多
Ta-doped titanium dioxide films are deposited on fused quartz substrates using the rf magnetron sputtering technique at different substrate temperatures. After post-annealing at 550℃ in a vacuum, all the films are cr...Ta-doped titanium dioxide films are deposited on fused quartz substrates using the rf magnetron sputtering technique at different substrate temperatures. After post-annealing at 550℃ in a vacuum, all the films are crystallized into the polycrystalline anatase TiO2 structure. The effects of substrate temperature from room temperature up to 350℃ on the structure, morphology, and photoelectric properties of Ta-doped titanium dioxide films are analyzed. The average transmittance in the visible region(400-800 nm) of all films is more than 73%.The resistivity decreases firstly and then increases moderately with the increasing substrate temperature. The polycrystalline film deposited at 150℃ exhibits a lowest resistivity of 7.7 × 10^-4Ω·cm with the highest carrier density of 1.1×10^21 cm^-3 and the Hall mobility of 7.4 cm^2·V^-1s^-1.展开更多
A patterned monolayer graphene metamaterial structure consisting of six graphene blocks and two graphene strips is proposed to generate triple plasmon-induced transparency(PIT).TriplePIT can be effectively modulated b...A patterned monolayer graphene metamaterial structure consisting of six graphene blocks and two graphene strips is proposed to generate triple plasmon-induced transparency(PIT).TriplePIT can be effectively modulated by Fermi levels of graphene.The theoretically calculated results by coupled mode theory show a high matching degree with the numerically simulated results by finite-difference time-domain.Intriguingly,the high-sensitive refractive index sensing and excellent slow-light performance can be realized in the proposed graphene metamaterial structure.The sensitivity(S)and figure of merit can reach up to 5.7115 THz RIU^(-1)and 116.32,respectively.Moreover,the maximum group refractive index is 1036.Hence,these results may provide a new idea for designing graphene-based sensors and slow light devices.展开更多
Active control of terahertz(THz)waves is attracting tremendous attentions in terahertz communications and active photonic devices.Perovskite,due to its excellent photoelectric conversion performance and simple manufac...Active control of terahertz(THz)waves is attracting tremendous attentions in terahertz communications and active photonic devices.Perovskite,due to its excellent photoelectric conversion performance and simple manufacturing process,has emerged as a promising candidate for optoelectronic applications.However,the exploration of perovskites in optically controlled THz modulators is still limited.In this work,the photoelectric properties and carrier dynamics of FA_(0.4)MA_(0.6)PbI_(3)perovskite films were investigated by optical pumped terahertz probe(OPTP)system.The ultrafast carrier dynamics reveal that FA_(0.4)MA_(0.6)PbI_(3)thin film exhibits rapid switching and relaxation time within picosecond level,suggesting that FA_(0.4)MA_(0.6)PbI_(3)is an ideal candidate for active THz devices with ultrafast response.Furthermore,as a proof of concept,a FA_(0.4)MA_(0.6)PbI_(3)-based metadevice with integrating plasma-induced transparency(PIT)effect was fabricated to achieve ultrafast modulation of THz wave.The experimental results demonstrated that the switching time of FA_(0.4)MA_(0.6)PbI_(3)-based THz modulator is near to 3.5 ps,and the threshold of optical pump is as low as 12.7μJ cm^(-2).The simulation results attribute the mechanism of ultrafast THz modulation to photo-induced free carriers in the FA_(0.4)MA_(0.6)PbI_(3)layer,which progressively shorten the capacitive gap of PIT resonator.This study not only illuminates the potential of FA_(0.4)MA_(0.6)PbI_(3)in THz modulation,but also contributes to the field of ultrafast photonic devices.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11647122 and 61705064)the Natural Science Foundation of Hubei Province,China(Grant Nos.2018CFB672 and 2021CFB607)+1 种基金the Project of the Hubei Provincial Department of Education,China(Grant Nos.B2021215 and T201617)the Natural Science Foundation of Xiaogan City,China(Grant Nos.XGKJ2021010002 and XGKJ2021010003)。
文摘A dynamically tunable multiband plasmon-induced transparency(PIT) effect in a series of rectangle cavities coupled with a graphene nanoribbon waveguide system is investigated theoretically and numerically by tuning the Fermi level of the graphene rectangle cavity. A single-PIT effect is realized using two different methods: one is the direct destructive interference between bright and dark modes, and the other is the indirect coupling through a graphene nanoribbon waveguide. Moreover, dual-PIT effect is obtained by three rectangle cavities side-coupled with a graphene nanoribbon waveguide.Results show that the magnitude of the dual-PIT window can be controlled between 0.21 and 0.74, and the corresponding group index is controlled between 143.2 and 108.6. Furthermore, the triple-PIT effect is achieved by the combination of bright–dark mode coupling and the cavities side-coupled with waveguide mechanism. Thus, sharp PIT windows can be formed, a high transmission is maintained between 0.51 and 0.74, and the corresponding group index is controlled between161.4 and 115.8. Compared with previously proposed graphene-based PIT effects, the size of the introduced structure is less than 0.5 μm2. Particularly, the slow light effect is crucial in the current research. Therefore, a novel approach is introduced toward the realization of optical sensors, optical filters, and slow light and light storage devices with ultra-compact,multiband, and dynamic tunable.
基金Project supported by the Key Science and Technology Research Project of Henan Province,China(Grant Nos.162102210164 and 1721023100107)the Natural Science Foundation of Henan Educational Committee,China(Grant No.17A140002)
文摘A graphene-based metamaterial for THz plasmon induced transparency(PIT) is presented and numerically studied in this paper, which consists of two horizontal graphene strips attached to a continuous vertical wire separately. The calculated surface current distributions demonstrate that the distinct PIT window results from the near-field coupling of two bright modes. To explore the physical mechanism of PIT effect, we employ the coupled Lorentz oscillator model. The transmission spectra obtained with this model fits well with the simulation results. The performance of the PIT system can be controlled through the geometry parameters of graphene strips. Moreover, the transparency window can be dynamically tuned by varying the Fermi energy and the carrier mobility of the graphene strips. The slow light effect is also explored in our proposed structure and it can achieve 1.25 ps when Fermi energy is 1.3 eV. Finally, the position of the transmission window with the variation of the nearby medium refractive index is examined. Such a proposed graphene-based PIT system may have great potential applications in photonic devices.
基金Project supported by the Natural Science Foundation of Henan Provincial Educational Committee,China(Grant No.21A140026).
文摘Based on Dirac semimetal metamaterials,the tunable plasmon induced transparency(PIT)is investigated elaborately in this work.The designed unit cell consists of a strip and a square bracket,which is periodically aligned on the dielectric substrate.Our numerical results illustrate that a pronounced transparency window exists due to near field coupling between two bright modes,which can be dynamically tuned with Fermi energy.Namely,the transparency window demonstrates a distinct blue shift with a larger Fermi energy.Moreover,an on-to-off switch of the PIT transparency window is realized with different polarization angles.In addition,the accompanied slow light property is examined with the calculation of phase and group delay.Finally,a small variation of the refractive index of the substrate can induce a clear movement of the PIT transparency window which delivers a guidance in the application of optical sensing.Thus,this work provides us a new strategy to design compact and adjustable PIT devices and has potential applications in highly tunable optical switchers,sensors,and slow light devices.
基金Project supported by the Key Science and Technology Research Project of Henan Province,China(Grant Nos.162102210164 and 1721023100107)the Natural Science Foundation of Henan Educational Committee,China(Grant No.17A140002)
文摘We propose and numerically demonstrate a tunable plasmon-induced transparency(PIT) phenomenon based on asymmetric H-shaped graphene metamaterials. The tunable PIT effect is realized through varying the applied polarization angles rather than changing the structure geometry. By simply adjusting the polarization angle, the transmission spectra can be controlled between the switch-on state and switch-off state. The physical mechanism of the induced transparency is revealed from magnetic dipole inductive coupling and phase coupling. Importantly, by varying the Fermi energy of the graphene or the refractive index of the substrate, the resonant position of the PIT can be dynamically controlled and the maximum modulation depths can reach up to 60.7%. The sensitivity(nm/RIU) of the graphene structure, which is the shift of resonance wavelength per unit change of refractive index, is 5619.56 nm/RIU. Moreover, we also extend our research to the x-axis symmetric H-shaped structure, and the tunable PIT transmission window can also be realized. The physical mechanism of the induced transparency is revealed from the electric dipole hybridization coupling. Our designed H-shaped graphene-based structures is a promising candidate for compact elements such as tunable sensors, switches and slow-light devices.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374041 and 11404030the Fund of State Key Laboratory of Information Photonics and Optical Communications of Beijing University of Posts and Telecommunications of China
文摘We numerically investigate a coupled-resonator structure consisting of a stub resonator and a nanodisk resonator using a two-dimensional finite element method. Simulation results show that plasmon-induced transparency (PIT) occurs in the transmission spectra, and the sharp asymmetric Fano lines increase the sensitivity to 1.4 ×10^3 nm/RIU. We also analyze the properties of the structure with different radii of the nanodisk and the length of the tooth cavity. Moreover, we find that the PIP only happens when the staggered system is around a fixed location with different separate distances, which is not similar to the previous researches. Our model may be important to photonic-integrated circuits and the sensitivity in sensors.
基金Supported by the Key Scientific Research Plan of Colleges and Universities in Henan Province(23B140006)the National Natural Science Foundation of China(11965017)。
文摘We theoretically study the effect of Kerr effect on the second-order nonlinearity induced transparency in a double-resonant optical cavity system.We show that in the presence of the Kerr effect,as the strength of the Kerr effect increases,the absorption curve exhibits an asymmetric-symmetric-asymmetric transition,and the zero absorption point shifts with the increase of the Kerr effect.Furthermore,by changing the strength of the Kerr effect,we can control the width of the transparent window,and the position of the zero-absorption point and meanwhile change the left and right width of the absorption peak.The asymmetry absorption curve can be employed to improve the quality factor of the cavity when the frequency detuning is tuned to be around the right peak.The simple dependence of the zeroabsorption point on the strength of Kerr effect suggests that the strength of Kerr effect can be measured by measuring the position of the zero-absorption point in a possible application.
基金Project supported by the National Key Basic Research Program of China(Grant No.2013CB922003)the National Natural Science Foundation of China(Grant Nos.91421305,91121005,11674359,and 91436106)
文摘We have studied the phenomenon of electromagnetically induced transparency(EIT) of ^87Rb vapor with a buffer gas in a magnetic field at room temperature. It is found that the spectral lines caused by the velocity selective optical pump effects get much weaker and wider when the sample cell is mixed with a 5-Torr N_2 gas while the EIT signal is kept almost unchanged. A weighted least-square fit is also developed to remove the Doppler broadening completely. This spectral method provides a way to measure the Zeeman splitting with high resolution, for example, the Λ-type EIT resonance splits into four peaks on the D_2 line of ^87Rb in the thermal 2-cm vapor cell with a magnetic field along the electric field of the linearly polarized coupling laser. The high-resolution spectrum can be used to lock the laser to a given frequency by tuning the magnetic field.
基金Project(2018JJ4086)supported by the Natural Science Foundation of Hunan Province,ChinaProject(520)supported by the Training and Innovation Base for Graduate of Education Department of Hunan Province,China+1 种基金Project(201802368048)supported by Industry-University Cooperation and Education Project of National Education Department,ChinaProject(CSUZC201925)supported by the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,China。
文摘Plasmon induced transparency(PIT)in the transparent window provides new insights into the design of optical filters,switches and storage,and integrated optics.The slow light effect makes PIT applicable to both sensors and slow light devices.Besides,PIT can overcome the diffraction limit of light,which makes it possible to manipulate light on a half-wavelength scale and brings good news to the miniaturization of optical devices.In this paper,we first summarize the researches of PIT phenomenon based on metal-dielectric-metal(MDM)waveguide systems and analyze the physical mechanisms of PIT including bright-dark mode interactions and phase-coupling-induced transparency.Then,we review the applications of PIT in optical sensing,optical filtering,optical switching,slow light devices and optical logic devices.At last,we outline important challenges that need to be addressed,provide corresponding solutions and predict important directions for future research in this area.
文摘Transparent conductive cadmium indium oxide films (CdIn2O4) were prepared by r.f. reactive sputtering from Cd-In alloy targets under an Ar-O2 atmosphere. Electrical conductivity of the order of 105Ω-1.m-1 and the optical transmission as high as 94% are easily attained by postdeposition annealing treatment. The effects of oxygen concentration in the reactive gas mixture and post-deposition annealing treatment on the optical transmittance as well as optical parameters, such as refractive index (n), extinction coefficient (k), real part (ε') and imaginary part (ε') of the dielectric constant, were studied in the visible and near-infrared region. The highfrequency dielectric constant ε∞ the plasma frequency ωP, and the conduction band effective mass mc of different samples were also investigated
文摘The influences of various kinds of UV-absorbers, antioxidants and their mixtures on UV-aging resis- tance of transparent unsaturated polyester FRP are studied by artificial aocelerating aging test.The results show that the UV-aging resistance of com- bined stabilizers is better than single stabilizer. It is concluded that the cooperative effect of UV -absorbers is caused bg the increase of wave leng- th and intensity of the absorption light the coopora- tive effect of UV-absorbers and antioxidants is caused by Dreventing the photo-oxidantion.
文摘Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceramics containing nanocrystals. The result shows that the local temperature of the nanocrystals embedded in glass matrices is much higher than the environmental temperature of the sample. It is suggested that the tempera,ture-dependent thermal energy induced by the light absorption must be considered when the theory of thermal transportation is applied to the study of local thermal effect.
基金Project supported by the National Basic Research Program of China(Grant No.2015CB921502)the National Natural Science Foundation of China(Grant Nos.11474184 and 11627805)+1 种基金the 111 Project,China(Grant No.B13029)the Fundamental Research Funds of Shandong University,China
文摘The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in PffYIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic insulator YIG blocking charge current and transmitting spin current via the magnon current. Therefore, the nonlocal voltage induced by an inverse spin Hall effect (ISHE) in FM can be detected. With the magnetization of FM parallel or antiparallel to the spin polarization of pure spin currents (σsc), the spin-independent nonlocal voltage is induced. This indicates that the spin transparency at the Cu/FM interface is spin-independent, which demonstrates that the influence of spin-dependent electro-chemical potential due to spin accumulation on the interfacial spin transparency is negligible. Furthermore, a larger spin Hall angle of Fe20Ni80 (Py) than that of Ni is obtained from the nonlocal voltage measurements.
基金This work is supported by the National Natural Srience Foundation of China(No.69876025 and No.60076006)Science and Technology Committee of Shandong Province and the Natural Science Foundation of Shandong Province.
文摘This paper presents the substrate temperature dependence of opto-electrical properties for transparent conducting Al-doped ZnO films prepared on polyisocyanate (PI) substrates by r f sputtering. Polycrystalline ZnO:Al films with good adherence to the substrates having a (002) preferred orientation have been obtained with resistivities in the range from 4.1×10-3to 5.3×104 Ωcm, carrier densities more than 2.6×1020 cm-3 and Hall mobilities between 5.78 and 13.11 cm2/V/s for films. The average transmittance reaches 75% in the visible spectrum. The quality of obtained films depends on substrate temperature during film fabrication.
基金Supported by the National Natural Science Foundation of China under Grant No 11374114
文摘Ta-doped titanium dioxide films are deposited on fused quartz substrates using the rf magnetron sputtering technique at different substrate temperatures. After post-annealing at 550℃ in a vacuum, all the films are crystallized into the polycrystalline anatase TiO2 structure. The effects of substrate temperature from room temperature up to 350℃ on the structure, morphology, and photoelectric properties of Ta-doped titanium dioxide films are analyzed. The average transmittance in the visible region(400-800 nm) of all films is more than 73%.The resistivity decreases firstly and then increases moderately with the increasing substrate temperature. The polycrystalline film deposited at 150℃ exhibits a lowest resistivity of 7.7 × 10^-4Ω·cm with the highest carrier density of 1.1×10^21 cm^-3 and the Hall mobility of 7.4 cm^2·V^-1s^-1.
基金supported by National Natural Science Foundation of China:61605018,11904032,61841503Science and Technology Project Foundation of the Education Department of Jiangxi Province:GJJ150815
文摘A patterned monolayer graphene metamaterial structure consisting of six graphene blocks and two graphene strips is proposed to generate triple plasmon-induced transparency(PIT).TriplePIT can be effectively modulated by Fermi levels of graphene.The theoretically calculated results by coupled mode theory show a high matching degree with the numerically simulated results by finite-difference time-domain.Intriguingly,the high-sensitive refractive index sensing and excellent slow-light performance can be realized in the proposed graphene metamaterial structure.The sensitivity(S)and figure of merit can reach up to 5.7115 THz RIU^(-1)and 116.32,respectively.Moreover,the maximum group refractive index is 1036.Hence,these results may provide a new idea for designing graphene-based sensors and slow light devices.
基金supported by the National Natural Science Foundation of China(U1930117,12204445)。
文摘Active control of terahertz(THz)waves is attracting tremendous attentions in terahertz communications and active photonic devices.Perovskite,due to its excellent photoelectric conversion performance and simple manufacturing process,has emerged as a promising candidate for optoelectronic applications.However,the exploration of perovskites in optically controlled THz modulators is still limited.In this work,the photoelectric properties and carrier dynamics of FA_(0.4)MA_(0.6)PbI_(3)perovskite films were investigated by optical pumped terahertz probe(OPTP)system.The ultrafast carrier dynamics reveal that FA_(0.4)MA_(0.6)PbI_(3)thin film exhibits rapid switching and relaxation time within picosecond level,suggesting that FA_(0.4)MA_(0.6)PbI_(3)is an ideal candidate for active THz devices with ultrafast response.Furthermore,as a proof of concept,a FA_(0.4)MA_(0.6)PbI_(3)-based metadevice with integrating plasma-induced transparency(PIT)effect was fabricated to achieve ultrafast modulation of THz wave.The experimental results demonstrated that the switching time of FA_(0.4)MA_(0.6)PbI_(3)-based THz modulator is near to 3.5 ps,and the threshold of optical pump is as low as 12.7μJ cm^(-2).The simulation results attribute the mechanism of ultrafast THz modulation to photo-induced free carriers in the FA_(0.4)MA_(0.6)PbI_(3)layer,which progressively shorten the capacitive gap of PIT resonator.This study not only illuminates the potential of FA_(0.4)MA_(0.6)PbI_(3)in THz modulation,but also contributes to the field of ultrafast photonic devices.