Nano-optics is an emergent research field in physics that appeared in the 1980s,which deals with light–matter optical interactions at the nanometer scale.In early studies of nano-optics,the main concern focus is to o...Nano-optics is an emergent research field in physics that appeared in the 1980s,which deals with light–matter optical interactions at the nanometer scale.In early studies of nano-optics,the main concern focus is to obtain higher optical resolution over the diffraction limit.The researches of near-field imaging and spectroscopy based on scanning near-field optical microscopy(SNOM)are developed.The exploration of improving SNOM probe for near-field detection leads to the emergence of surface plasmons.In the sense of resolution and wider application,there has been a significant transition from seeking higher resolution microscopy to plasmonic near-field modulations in the nano-optics community during the nano-optic development.Nowadays,studies of nano-optics prefer the investigation of plasmonics in different material systems.In this article,the history of the development of near-field optics is briefly reviewed.The difficulties of conventional SNOM to achieve higher resolution are discussed.As an alternative solution,surface plasmons have shown the advantages of higher resolution,wider application,and flexible nano-optical modulation for new devices.The typical studies in different periods are introduced and characteristics of nano-optics in each stage are analyzed.In this way,the evolution progress from near-field optics to plasmonics of nano-optics research is presented.The future development of nano-optics is discussed then.展开更多
Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Imp...Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Improving photothermal conversion efficiency and reducing water evaporation enthalpy are the two key strategies for the designing of PCMs.The desired PCMs that combine both of these properties remain a challenging task,even with the latest advancements in the field.Herein,we developed copper nanoparticles(NPs)with different conjugated nitrogen-doped microporous carbon coatings(Cu@C–N)as PCMs.The microporous carbon enveloping layer provides a highly efficient pathway for water transport and a nanoconfined environment that protects Cu NPs and facilitates the evaporation of water clusters,reducing the enthalpy of water evaporation.Meanwhile,the conjugated nitrogen nodes form strong metal-organic coordination bonds with the surface of copper NPs,acting as an energy bridge to achieve rapid energy transfer and provide high solar-to-vapor conversion efficiency.The Cu@C–N exhibited up to 89.4%solar-to-vapor conversion efficiency and an evaporation rate of 1.94 kgm^(−2) h^(−1) under one sun irradiation,outperforming conventional PCMs,including carbon-based materials and semiconductor materials.These findings offer an efficient design scheme for high-performance PCMs essential for solar evaporators to address global water scarcity.展开更多
Optical metasurfaces,comprising subwavelength quasi-planar nanostructures,constitute a universal platform for manipulating the amplitude,phase,and polarization of light,thus paving a way for the next generation of hig...Optical metasurfaces,comprising subwavelength quasi-planar nanostructures,constitute a universal platform for manipulating the amplitude,phase,and polarization of light,thus paving a way for the next generation of highly integrated multifunctional optical devices.In this work,we introduce a reflective metasurface for the generation of a complete(angularly resolved)polarization set by randomly interleaving anisotropic plasmonic meta-atoms acting as nanoscale wave plates.In the proof-of-concept demonstration,we achieve multidirectional beam-steering into different polarization channels forming a complete set of polarization states,which can also be dynamically altered by switching the spin of incident light.The developed design concept represents a significant advancement in achieving flat polarization optics with advanced functionalities.展开更多
Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmo...Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.展开更多
With the rapid development of information and communication technology,a key objective in the field of optoelectronic integrated devices is to reduce the nano-laser size and energy consumption.Photonics nanolasers are...With the rapid development of information and communication technology,a key objective in the field of optoelectronic integrated devices is to reduce the nano-laser size and energy consumption.Photonics nanolasers are unable to exceed the diffraction limit and typically exhibit low modulation rates of several GHz.In contrast,plasmonic nanolaser utilizes highly confined surface plasmon polariton(SPP)mode that can exceed diffraction limit and their strong Purcell effect can accelerate the modulation rates to several THz.Herein,we propose a parametrically tunable artificial plasmonic nanolasers based on metal–insulator–semiconductor–insulator–metal(MISIM)structure,which demonstrates its ability to compress the mode field volume toλ/14.As the pump power increases,the proposed artificial plasmonic nanolaser exhibits 20-nm-wide output spectrum.Additionally,we investigate the effects of various cavity parameters on the nanolaser’s output threshold,offering potentials for realizing low-threshold artificial plasmonic nanolasers.Moreover,we observe a blue shift in the center wavelength of the nanolaser output with thinner gain layer thickness,predominantly attributed to the increased exciton–photon coupling strength.Our work brings inspiration to several areas,including spaser-based interconnects,nano-LEDs,spontaneous emission control,miniaturization of photon condensates,eigenmode engineering of plasmonic nanolasers,and optimal design driven by artificial intelligence(AI).展开更多
Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.How...Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.However,the development of efficient photocatalysts for seawater splitting remains a formidable challenge.Herein,a 2D/2D ZnIn_(2)S_(4)/WO_(3)(ZIS/WO_(3))heterojunction nanostructure is fabricated to efficiently separate the photoinduced carriers by steering electron transfer from the conduction band minimum of WO_(3) to the valence band maximum of ZIS via constructing internal electric field.Subsequently,plasmonic Au nanoparticles(NPs)as a novel photosensitizer and a reduction cocatalyst are anchored on ZIS/WO_(3) surface to further enhance the optical absorption of ZIS/WO_(3) heterojunction and accelerate the catalytic conversion.The obtained Au/ZIS/WO_(3) photocatalyst exhibits an outstanding H_(2) evolution rate of 2610.6 or 3566.3μmol g^(-1)h~(-1)from seawater splitting under visible or full-spectrum light irradiation,respectively.These rates represent an impressive increase of approximately 7.3-and 6,6-fold compared to those of ZIS under the illumination of the same light source.The unique 2D/2D structure,internal electric field,and plasmonic metal modification together boost the photocatalytic H_(2) evolution rate of Au/ZIS/WO_(3),making it even comparable to H_(2) evolution from pure water splitting.The present work sheds light on the development of efficient photocatalysts for seawater splitting.展开更多
Plasmonic vortices confining orbital angular momentums to surface have aroused wide research interest in the last decade.Recent advances of near-field microscopes have enabled the study on the spatiotemporal dynamics ...Plasmonic vortices confining orbital angular momentums to surface have aroused wide research interest in the last decade.Recent advances of near-field microscopes have enabled the study on the spatiotemporal dynamics of plasmonic vortices,providing a better understanding of optical orbital angular momentums in the evanescent wave regime.However,these works only focused on the objective characterization of plasmonic vortex and have not achieved subjectively tailoring of its spatiotemporal dynamics for specific applications.Herein,it is demonstrated that the plasmonic vortices with the same topological charge can be endowed with distinct spatiotemporal dynamics by simply changing the coupler design.Based on a near-field scanning terahertz microscopy,the surface plasmon fields are directly obtained with ultrahigh spatiotemporal resolution,experimentally exhibiting the generation and evolution divergences during the whole lifetime of plasmonic vortices.The proposed strategy is straightforward and universal,which can be readily applied into visible or infrared frequencies,facilitating the development of plasmonic vortex related researches and applications.展开更多
A dispersion model is developed to provide a generic tool for configuring plasmonic resonance spectral characteristics.The customized design of the resonance curve aiming at specific detection requirements can be achi...A dispersion model is developed to provide a generic tool for configuring plasmonic resonance spectral characteristics.The customized design of the resonance curve aiming at specific detection requirements can be achieved.According to the model,a probe-type nano-modified fiber optic configurable plasmonic resonance(NMF-CPR)sensor with tip hot spot enhancement is demonstrated for the measurement of the refractive index in the range of 1.3332-1.3432 corresponding to the low-concentration biomarker solution.The new-type sensing structure avoids excessive broadening and redshift of the resonance dip,which provides more possibilities for the surface modification of other functional nanomaterials.The tip hot spots in nanogaps between the Au layer and Au nanostars(AuNSs),the tip electric field enhancement of AuNSs,and the high carrier mobility of the WSe_(2)layer synergistically and significantly enhance the sensitivity of the sensor.Ex-perimental results show that the sensitivity and the figure of merit of the tip hot spot enhanced fiber NMF-CPR sensor can achieve up to 2995.70 nm/RIU and 25.04 RIU^(−1),respectively,which are 1.68 times and 1.29 times higher than those of the conventional fiber plasmonic resonance sensor.The results achieve good agreements with numerical simulations,demonstrate a better level compared to similar reported studies,and verify the correctness of the dispersion model.The detection resolution of the sensor reaches up to 2.00×10^(−5)RIU,which is obviously higher than that of the conventional side-polished fiber plasmonic resonance sensor.This indicates a high detection accuracy of the sensor.The dense Au layer effectively prevents the intermediate nanomaterials from shedding and chemical degradation,which enables the sensor with high stability.Furthermore,the terminal reflective sensing structure can be used as a practical probe and can allow a more convenient operation.展开更多
Interaction between photons and phonons in cavity optomechanical systems provides a new toolbox for quantum information technologies.A GaAs/AlAs pillar multi-optical mode microcavity optomechanical structure can obtai...Interaction between photons and phonons in cavity optomechanical systems provides a new toolbox for quantum information technologies.A GaAs/AlAs pillar multi-optical mode microcavity optomechanical structure can obtain phonons with ultra-high frequency(~THz).However,the optical field cannot be effectively restricted when the diameter of the GaAs/AlAs pillar microcavity decreases below the diffraction limit of light.Here,we design a system that combines Ag nanocav-ity with GaAs/AlAs phononic superlattices,where phonons with the frequency of 4.2 THz can be confined in a pillar with~4 nm diameter.The Q_(c)/V reaches 0.22 nm^(-3),which is~80 times that of the photonic crystal(PhC)nanobeam and~100 times that of the hybrid point-defect PhC bowtie plasmonic nanocavity,where Q_(c) is optical quality factor and V is mode volume.The optome-chanical single-photon coupling strength can reach 12 MHz,which is an order of magnitude larger than that of the PhC nanobeam.In addition,the mechanical zero-point fluctuation amplitude is 85 fm and the efficient mass is 0.27 zg,which is much smaller than the PhC nanobeam.The phononic superlattice-Ag nanocavity optomechanical devices hold great potential for applications in the field of integrated quantum optomechanics,quantum information,and terahertz-light transducer.展开更多
Polarizing beam splitter has rather significant applications in polarization diversity circuits and polarization multiplexing systems.In this paper,we present an asymmetric polarizing beam splitter utilizing hybrid pl...Polarizing beam splitter has rather significant applications in polarization diversity circuits and polarization multiplexing systems.In this paper,we present an asymmetric polarizing beam splitter utilizing hybrid plasmonic waveguide.The special hybrid structure with a hybrid waveguide and a dielectric waveguide can limit the energy of TE and TM modes to a different layer.Therefore,we can achieve beam splitting by adjusting the corresponding parameters of the two waveguides.First,we studied the influences of different structure parameters on the real part of the effective mode refractive index of the two waveguides,and obtained a set of parameters that satisfy the condition of strong coupling of TM mode and weak coupling of TE mode.Then,the performance of our proposed polarizing beam splitter is evaluated numerically.The length of the coupling section is only 4.1μm,and the propagation loss of TM and TE modes is 0.0025 d B/μm and 0.0031 d B/μm respectively.Additionally,the extinction ratios of TM and TE modes are 10.62 d B and 12.55 d B,respectively.Particularly,the proposed device has excellent wavelength insensitivity.Over the entire C-band,the fluctuation of the whole normalized output power is less than 0.03.In short,our proposed asymmetric polarizing beam splitter features ultra-compactness,low propagation loss,and broad bandwidth,which would provide promising applications in polarization multiplexing system and polarization diversity circuits relevant to optical interconnection.展开更多
With the advancement of technology,shielding for terahertz(THz)electronic and communication equipment is increasingly important.The metamaterial absorption technique is mostly used to shield electromagnetic interferen...With the advancement of technology,shielding for terahertz(THz)electronic and communication equipment is increasingly important.The metamaterial absorption technique is mostly used to shield electromagnetic interference(EMI)in THz sensing technologies.The most widely used THz metamaterial absorbers suffer from their narrowband properties and the involvement of complex fabrication techniques.Materials with multifunctional properties,such as adjustable conductivity,broad bandwidth,high flexibility,and robustness,are driving future development to meet THz shielding applications.In this article,a theoretical simulation approach based on finite difference time domain(FDTD)is utilized to study the absorption and shielding characteristics of a two-dimensional(2D)MXene Ti_(3)C_(2)T_(x) metasurface absorber in the THz band.The proposed metamaterial structure is made up of a square-shaped array of MXene that is 50 nmthick and is placed on top of a silicon substrate.The bottom surface of the silicon is metalized with gold to reduce the transmission and ultimately enhance the absorption at 1–3 THz.The symmetric adjacent space between theMXene array results in a widening of bandwidth.The proposed metasurface achieves 96%absorption under normal illumination of the incident source and acquires an average of 25 dB shielding at 1 THz bandwidth,with the peak shielding reaching 65 dB.The results show that 2D MXene-based stacked metasurfaces can be proven in the realization of low-cost devices for THz shielding and sensing applications.展开更多
Germanene nanostrips(GeNSs)have garnered significant attention in modern semiconductor technology due to their exceptional physical characteristics,positioning them as promising candidates for a wide range of applicat...Germanene nanostrips(GeNSs)have garnered significant attention in modern semiconductor technology due to their exceptional physical characteristics,positioning them as promising candidates for a wide range of applications.GeNSs exhibit a two-dimensional(buckled)honeycomb-like lattice,which is similar to germanene but with controllable bandgaps.The modeling of GeNSs is essential for developing appropriate synthesis methods as it enables understanding and controlling the growth process of these systems.Indeed,one can adjust the strip width,which in turn can tune the bandgap and plasmonic response of the material to meet specific device requirements.In this study,the objective is to investigate the electronic behav-ior and THz plasmon features of GeNSs(≥100 nm wide).A semi-analytical model based on the charge-carrier velocity of free-standing germanene is utilized for this purpose.The charge-carrier velocity of freestanding germanene is determined through the GW approximation(V_(F)=0.702×10^(6)m·s^(−1)).Within the width range of 100 to 500 nm,GeNSs exhibit narrow bandgaps,typi-cally measuring only a few meV.Specifically,upon analysis,it was found that the bandgaps of the investigated GeNSs ranged between 29 and 6 meV.As well,these nanostrips exhibit√q-like plasmon dispersions,with their connected plasmonic fre-quency(≤30 THz)capable of being manipulated by varying parameters such as strip width,excitation plasmon angle,and sam-ple quality.These manipulations can lead to frequency variations,either increasing or decreasing,as well as shifts towards larger momentum values.The outcomes of our study serve as a foundational motivation for future experiments,and further con-firmation is needed to validate the reported results.展开更多
Color filters in different surroundings inherently suffer from angular sensitivity,which hinders their practical applications.Here,we present an angle-insensitive plasmonic filter that can produce different color resp...Color filters in different surroundings inherently suffer from angular sensitivity,which hinders their practical applications.Here,we present an angle-insensitive plasmonic filter that can produce different color responses to different surrounding environments.The color filters are based on a two-dimensional periodically and randomly distributed silver nanodisk array on a silica substrate.The proposed plasmonic color filters not only produce bright colors by altering the diameter of the Ag nanodisk,but also achieve continuous color palettes by changing the surrounding environment.Due to the weak coupling between the metallic nanodisks,the plasmonic color filters can enable good incident angle-insensitive properties(up to 30°).The strategy presented here could exhibit robust and promising applicability in anti-counterfeiting and imaging technologies.展开更多
Interfacial solar steam generation(ISSG)is a novel and potential solution to global freshwater crisis.Here,based on a facile sol-gel fabrication process,we demonstrate a highly scalable Janus aramid nanofiber aerogel(...Interfacial solar steam generation(ISSG)is a novel and potential solution to global freshwater crisis.Here,based on a facile sol-gel fabrication process,we demonstrate a highly scalable Janus aramid nanofiber aerogel(JANA)as a high-efficiency ISSG device.JANA performs near-perfect broadband optical absorption,rapid photothermal conversion and effective water transportation.Owning to these features,efficient desalination of salty water and purification of municipal sewage are successfully demonstrated using JANA.In addition,benefiting from the mechanical property and chemical stability of constituent aramid nanofibers,JANA not only possesses outstanding flexibility and fire-resistance properties,but its solar steaming efficiency is also free from the influences of elastic deformations and fire treatments.We envision JANA provides a promising platform for mass-production of high-efficiency ISSG devices with supplementary capabilities of convenient transportation and long-term storage,which could further promote the realistic applications of ISSG technology.展开更多
Relationship of plasmonic properties of multiple clusters to molecular interactions and properties of a single cluster or molecule have become increasingly important due to the continuous emergence of molecular and cl...Relationship of plasmonic properties of multiple clusters to molecular interactions and properties of a single cluster or molecule have become increasingly important due to the continuous emergence of molecular and cluster devices or systems.A hybrid phenomenon similar to plasmonic nanoparticle hybridization exists between two molecules with plasmon excitation modes.We use linear-response time-dependent density functional theory,real-time propagation time-dependent density functional theory,the plasmonicity index,and transition contribution maps(TCMs)to identify the plasmon excitation modes for the linear polyenes octatetraene with–OH and–NH_(2)groups and analyze the hybridization characteristics using charge transitions.The results show that molecular plasmon hybridization exists when the two molecules are coupled.The TCM analysis shows that the plasmon modes and hybridization result from collective and single-particle excitation.The plasmon mode is stronger,and the individual properties of the molecules are maintained after coupling when there is extra charge depose in the molecules because the electrons are moving in the molecules.This study provides new insights into the molecular plasmon hybridization of coupled molecules.展开更多
Owing to the good adjustability and the strong near-field enhancement,surface plasmons are widely used in optical force trap,thus the optical force trap can achieve excellent performance.Here,we use the Laguerre–Gaus...Owing to the good adjustability and the strong near-field enhancement,surface plasmons are widely used in optical force trap,thus the optical force trap can achieve excellent performance.Here,we use the Laguerre–Gaussian beam and a plasmonic gold ring to separate enantiomers by the chiral optical force.Along with the radial optical force that traps the particles,there is also a chirality-sign-sensitive lateral force arising from the optical spin angular momentum,which is caused by the interaction between optical orbit angular momentum and gold ring structure.By selecting a specific incident wavelength,the strong angular scattering and non-chiral related azimuthal optical force can be suppressed.Thus the chiral related azimuthal optical force can induce an opposite orbital rotation of the trapped particles with chirality of different sign near the gold ring.This work proposes an effective approach for catchingand separating chiral enantiomers.展开更多
Simple and efficient nanofabrication technology with low cost and high flexibility is indispensable for fundamental nanoscale research and prototyping.Lithography in the near field using the surface plasmon polariton(...Simple and efficient nanofabrication technology with low cost and high flexibility is indispensable for fundamental nanoscale research and prototyping.Lithography in the near field using the surface plasmon polariton(i.e.,plasmonic lithography)provides a promising solution.The system with high stiffness passive nanogap control strategy on a high-speed rotating substrate is one of the most attractive highthroughput methods.However,a smaller and steadier plasmonic nanogap,new scheme of plasmonic lens,and parallel processing should be explored to achieve a new generation high resolution and reliable efficient nanofabrication.Herein,a parallel plasmonic direct-writing nanolithography system is established in which a novel plasmonic flying head is systematically designed to achieve around 15 nm minimum flying-height with high parallelism at the rotating speed of 8–18 m·s^(-1).A multi-stage metasurface-based polarization insensitive plasmonic lens is proposed to couple more power and realize a more confined spot compared with conventional plasmonic lenses.Parallel lithography of the nanostructures with the smallest(around 26 nm)linewidth is obtained with the prototyping system.The proposed system holds great potential for high-freedom nanofabrication with low cost,such as planar optical elements and nano-electromechanical systems.展开更多
A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong fie...A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong field enhancement in the air gap region and low propagation loss, which enables the realization of lasing at the deep subwavelength scale.By optimizing the geometric parameters of the structure, a minimal lasing threshold is achieved while maintaining the capacity of ultra-deep subwavelength mode confinement. Compared with the previous coupled nanowire pair based hybrid plasmonic structure, a lower threshold can be obtained with the same geometric parameters. The proposed nanolaser can be integrated into a miniature chip as a nanoscale light source and has the potential to be widely used in optical communication and optical sensing technology.展开更多
The rise of plasmonic metamaterials in recent years has unveiled the possibility of revolutionizing the entire field of optics and photonics, challenging well-established technological limitations and paving the way t...The rise of plasmonic metamaterials in recent years has unveiled the possibility of revolutionizing the entire field of optics and photonics, challenging well-established technological limitations and paving the way to innovations at an unprecedented level To capitalize the disruptive potential of this rising field of science and technology, it is important to be able to combine the richness of optical phenomena enabled by nanoplasmonics in order to realize metamaterial components, devices, and systems of increasing complexity. Here, we review a few recent research directions in the field of plasmonic metamaterials, which may foster further advancements in this research area. We will discuss the anomalous scattering features enabled by plasmonic nanoparticles and nanoclusters, and show how they may represent the fundamental building blocks of complex nanophotonic architectures. Building on these concepts, advanced components can be designed and operated, such as optical nanoantennas and nanoantenna arrays, which, in turn, may be at the basis of metasurface devices and complex systems. Following this path, from basic phenomena to advanced functionalities, the field of plasmonic metamaterials offers the promise of an important scientific and technological impact, with applications spanning from medical diagnostics to clean energy and information processing.展开更多
A novel plasmonic photo‐Fenton catalyst of Ag/AgCl/Fe‐S was synthesized by ion exchange and photoreduction methods.The obtained catalyst was characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,scan...A novel plasmonic photo‐Fenton catalyst of Ag/AgCl/Fe‐S was synthesized by ion exchange and photoreduction methods.The obtained catalyst was characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,scanning electron microscope imaging,and Brunauer‐Emmett‐Teller measurements.Moreover,the photocatalytic activity of Ag/AgCl/Fe‐S was investigated for its degradation activity towards bisphenol A(BPA)as target pollutant under visible light irradiation.The effects of H2O2concentration,pH value,illumination intensity,and catalyst dosage on BPA degradation were examined.Our results indicated that the Ag/AgCl material was successfully loaded onto Fe‐sepiolite and showed a high photocatalytic activity under illumination by visible light.Furthermore,active species capture experiments were performed to explore the photocatalytic mechanism of the Ag/AgCl/Fe‐S in this heterogeneous photo‐Fenton process,where the major active species included hydroxyl radicals(?OH)and holes(h+).展开更多
文摘Nano-optics is an emergent research field in physics that appeared in the 1980s,which deals with light–matter optical interactions at the nanometer scale.In early studies of nano-optics,the main concern focus is to obtain higher optical resolution over the diffraction limit.The researches of near-field imaging and spectroscopy based on scanning near-field optical microscopy(SNOM)are developed.The exploration of improving SNOM probe for near-field detection leads to the emergence of surface plasmons.In the sense of resolution and wider application,there has been a significant transition from seeking higher resolution microscopy to plasmonic near-field modulations in the nano-optics community during the nano-optic development.Nowadays,studies of nano-optics prefer the investigation of plasmonics in different material systems.In this article,the history of the development of near-field optics is briefly reviewed.The difficulties of conventional SNOM to achieve higher resolution are discussed.As an alternative solution,surface plasmons have shown the advantages of higher resolution,wider application,and flexible nano-optical modulation for new devices.The typical studies in different periods are introduced and characteristics of nano-optics in each stage are analyzed.In this way,the evolution progress from near-field optics to plasmonics of nano-optics research is presented.The future development of nano-optics is discussed then.
基金supported by the National Natural Science Foundation of China(Grant Nos.52162012,52262014,22368019)Key Research and Development Project of Hainan Province(Grant Nos.ZDYF2022SHFZ053,ZDYF2021GXJS209)+1 种基金Science and Technology Innovation Talent Platform Fund for South China Sea New Star of Hainan Province(Grant No.NHXXRCXM202305)Open Research Project of State Key Laboratory of Marine Resource Utilization in South China Sea(Grant No.MRUKF2023020).
文摘Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Improving photothermal conversion efficiency and reducing water evaporation enthalpy are the two key strategies for the designing of PCMs.The desired PCMs that combine both of these properties remain a challenging task,even with the latest advancements in the field.Herein,we developed copper nanoparticles(NPs)with different conjugated nitrogen-doped microporous carbon coatings(Cu@C–N)as PCMs.The microporous carbon enveloping layer provides a highly efficient pathway for water transport and a nanoconfined environment that protects Cu NPs and facilitates the evaporation of water clusters,reducing the enthalpy of water evaporation.Meanwhile,the conjugated nitrogen nodes form strong metal-organic coordination bonds with the surface of copper NPs,acting as an energy bridge to achieve rapid energy transfer and provide high solar-to-vapor conversion efficiency.The Cu@C–N exhibited up to 89.4%solar-to-vapor conversion efficiency and an evaporation rate of 1.94 kgm^(−2) h^(−1) under one sun irradiation,outperforming conventional PCMs,including carbon-based materials and semiconductor materials.These findings offer an efficient design scheme for high-performance PCMs essential for solar evaporators to address global water scarcity.
基金funded by the Danmarks Frie Forskningsfond(1134-00010B)Villum Fonden(Award in Technical and Natural Sciences 2019 and Grant No.37372)Y.Deng would like to acknowledge the support from the China Scholarship Council(Grant No.202108330079).
文摘Optical metasurfaces,comprising subwavelength quasi-planar nanostructures,constitute a universal platform for manipulating the amplitude,phase,and polarization of light,thus paving a way for the next generation of highly integrated multifunctional optical devices.In this work,we introduce a reflective metasurface for the generation of a complete(angularly resolved)polarization set by randomly interleaving anisotropic plasmonic meta-atoms acting as nanoscale wave plates.In the proof-of-concept demonstration,we achieve multidirectional beam-steering into different polarization channels forming a complete set of polarization states,which can also be dynamically altered by switching the spin of incident light.The developed design concept represents a significant advancement in achieving flat polarization optics with advanced functionalities.
基金supported by the Australian Research Council (DP200101353)。
文摘Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12174037,12204061,12204030,and 62375003)the Fundamental Research Funds for the Central Universities,China(Grant No.2022XD-A09)the Fund from the State Key Laboratory of Information Photonics and Optical Communication,China(Grant No.IPOC2021ZZ02)。
文摘With the rapid development of information and communication technology,a key objective in the field of optoelectronic integrated devices is to reduce the nano-laser size and energy consumption.Photonics nanolasers are unable to exceed the diffraction limit and typically exhibit low modulation rates of several GHz.In contrast,plasmonic nanolaser utilizes highly confined surface plasmon polariton(SPP)mode that can exceed diffraction limit and their strong Purcell effect can accelerate the modulation rates to several THz.Herein,we propose a parametrically tunable artificial plasmonic nanolasers based on metal–insulator–semiconductor–insulator–metal(MISIM)structure,which demonstrates its ability to compress the mode field volume toλ/14.As the pump power increases,the proposed artificial plasmonic nanolaser exhibits 20-nm-wide output spectrum.Additionally,we investigate the effects of various cavity parameters on the nanolaser’s output threshold,offering potentials for realizing low-threshold artificial plasmonic nanolasers.Moreover,we observe a blue shift in the center wavelength of the nanolaser output with thinner gain layer thickness,predominantly attributed to the increased exciton–photon coupling strength.Our work brings inspiration to several areas,including spaser-based interconnects,nano-LEDs,spontaneous emission control,miniaturization of photon condensates,eigenmode engineering of plasmonic nanolasers,and optimal design driven by artificial intelligence(AI).
基金supported by the National Natural Science Foundation of China(21872104,21501131,21978216 and 22272082)the Natural Science Foundation of Tianjin for Distinguished Young Scholar(20JCJQJC00150)the Analytical&Testing Center of Tiangong University for PL work。
文摘Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.However,the development of efficient photocatalysts for seawater splitting remains a formidable challenge.Herein,a 2D/2D ZnIn_(2)S_(4)/WO_(3)(ZIS/WO_(3))heterojunction nanostructure is fabricated to efficiently separate the photoinduced carriers by steering electron transfer from the conduction band minimum of WO_(3) to the valence band maximum of ZIS via constructing internal electric field.Subsequently,plasmonic Au nanoparticles(NPs)as a novel photosensitizer and a reduction cocatalyst are anchored on ZIS/WO_(3) surface to further enhance the optical absorption of ZIS/WO_(3) heterojunction and accelerate the catalytic conversion.The obtained Au/ZIS/WO_(3) photocatalyst exhibits an outstanding H_(2) evolution rate of 2610.6 or 3566.3μmol g^(-1)h~(-1)from seawater splitting under visible or full-spectrum light irradiation,respectively.These rates represent an impressive increase of approximately 7.3-and 6,6-fold compared to those of ZIS under the illumination of the same light source.The unique 2D/2D structure,internal electric field,and plasmonic metal modification together boost the photocatalytic H_(2) evolution rate of Au/ZIS/WO_(3),making it even comparable to H_(2) evolution from pure water splitting.The present work sheds light on the development of efficient photocatalysts for seawater splitting.
基金supported by the National Natural Science Foundation of China(62005193,62135008,62075158,62025504,61935015)the National Science Foundation(2114103)Guangxi Key Laboratory of Optoelectroric Information Processing(GD20202).
文摘Plasmonic vortices confining orbital angular momentums to surface have aroused wide research interest in the last decade.Recent advances of near-field microscopes have enabled the study on the spatiotemporal dynamics of plasmonic vortices,providing a better understanding of optical orbital angular momentums in the evanescent wave regime.However,these works only focused on the objective characterization of plasmonic vortex and have not achieved subjectively tailoring of its spatiotemporal dynamics for specific applications.Herein,it is demonstrated that the plasmonic vortices with the same topological charge can be endowed with distinct spatiotemporal dynamics by simply changing the coupler design.Based on a near-field scanning terahertz microscopy,the surface plasmon fields are directly obtained with ultrahigh spatiotemporal resolution,experimentally exhibiting the generation and evolution divergences during the whole lifetime of plasmonic vortices.The proposed strategy is straightforward and universal,which can be readily applied into visible or infrared frequencies,facilitating the development of plasmonic vortex related researches and applications.
基金financial supports from in part by National Natural Science Foundation of China under Grants 61922061, 61775161 and 61735011in part by the Tianjin Science Fund for Distinguished Young Scholars under Grant 19JCJQJC61400
文摘A dispersion model is developed to provide a generic tool for configuring plasmonic resonance spectral characteristics.The customized design of the resonance curve aiming at specific detection requirements can be achieved.According to the model,a probe-type nano-modified fiber optic configurable plasmonic resonance(NMF-CPR)sensor with tip hot spot enhancement is demonstrated for the measurement of the refractive index in the range of 1.3332-1.3432 corresponding to the low-concentration biomarker solution.The new-type sensing structure avoids excessive broadening and redshift of the resonance dip,which provides more possibilities for the surface modification of other functional nanomaterials.The tip hot spots in nanogaps between the Au layer and Au nanostars(AuNSs),the tip electric field enhancement of AuNSs,and the high carrier mobility of the WSe_(2)layer synergistically and significantly enhance the sensitivity of the sensor.Ex-perimental results show that the sensitivity and the figure of merit of the tip hot spot enhanced fiber NMF-CPR sensor can achieve up to 2995.70 nm/RIU and 25.04 RIU^(−1),respectively,which are 1.68 times and 1.29 times higher than those of the conventional fiber plasmonic resonance sensor.The results achieve good agreements with numerical simulations,demonstrate a better level compared to similar reported studies,and verify the correctness of the dispersion model.The detection resolution of the sensor reaches up to 2.00×10^(−5)RIU,which is obviously higher than that of the conventional side-polished fiber plasmonic resonance sensor.This indicates a high detection accuracy of the sensor.The dense Au layer effectively prevents the intermediate nanomaterials from shedding and chemical degradation,which enables the sensor with high stability.Furthermore,the terminal reflective sensing structure can be used as a practical probe and can allow a more convenient operation.
基金J.Z.acknowledges National Natural Science Foundation of China(12074371)CAS Interdisciplinary Innovation Team,Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)Key-Area Research and Development Program of Guangdong Province(Grant No.2018B030329001).
文摘Interaction between photons and phonons in cavity optomechanical systems provides a new toolbox for quantum information technologies.A GaAs/AlAs pillar multi-optical mode microcavity optomechanical structure can obtain phonons with ultra-high frequency(~THz).However,the optical field cannot be effectively restricted when the diameter of the GaAs/AlAs pillar microcavity decreases below the diffraction limit of light.Here,we design a system that combines Ag nanocav-ity with GaAs/AlAs phononic superlattices,where phonons with the frequency of 4.2 THz can be confined in a pillar with~4 nm diameter.The Q_(c)/V reaches 0.22 nm^(-3),which is~80 times that of the photonic crystal(PhC)nanobeam and~100 times that of the hybrid point-defect PhC bowtie plasmonic nanocavity,where Q_(c) is optical quality factor and V is mode volume.The optome-chanical single-photon coupling strength can reach 12 MHz,which is an order of magnitude larger than that of the PhC nanobeam.In addition,the mechanical zero-point fluctuation amplitude is 85 fm and the efficient mass is 0.27 zg,which is much smaller than the PhC nanobeam.The phononic superlattice-Ag nanocavity optomechanical devices hold great potential for applications in the field of integrated quantum optomechanics,quantum information,and terahertz-light transducer.
基金supported by the Shenzhen Science and Technology Program(JCYJ20210324093806017)the ShenzhenHong Kong Joint Innovation Foundation(SGDX20190919094401725)。
文摘Polarizing beam splitter has rather significant applications in polarization diversity circuits and polarization multiplexing systems.In this paper,we present an asymmetric polarizing beam splitter utilizing hybrid plasmonic waveguide.The special hybrid structure with a hybrid waveguide and a dielectric waveguide can limit the energy of TE and TM modes to a different layer.Therefore,we can achieve beam splitting by adjusting the corresponding parameters of the two waveguides.First,we studied the influences of different structure parameters on the real part of the effective mode refractive index of the two waveguides,and obtained a set of parameters that satisfy the condition of strong coupling of TM mode and weak coupling of TE mode.Then,the performance of our proposed polarizing beam splitter is evaluated numerically.The length of the coupling section is only 4.1μm,and the propagation loss of TM and TE modes is 0.0025 d B/μm and 0.0031 d B/μm respectively.Additionally,the extinction ratios of TM and TE modes are 10.62 d B and 12.55 d B,respectively.Particularly,the proposed device has excellent wavelength insensitivity.Over the entire C-band,the fluctuation of the whole normalized output power is less than 0.03.In short,our proposed asymmetric polarizing beam splitter features ultra-compactness,low propagation loss,and broad bandwidth,which would provide promising applications in polarization multiplexing system and polarization diversity circuits relevant to optical interconnection.
基金This research is funded by Abu Dhabi Award for Research Excellence(AARE19-245).
文摘With the advancement of technology,shielding for terahertz(THz)electronic and communication equipment is increasingly important.The metamaterial absorption technique is mostly used to shield electromagnetic interference(EMI)in THz sensing technologies.The most widely used THz metamaterial absorbers suffer from their narrowband properties and the involvement of complex fabrication techniques.Materials with multifunctional properties,such as adjustable conductivity,broad bandwidth,high flexibility,and robustness,are driving future development to meet THz shielding applications.In this article,a theoretical simulation approach based on finite difference time domain(FDTD)is utilized to study the absorption and shielding characteristics of a two-dimensional(2D)MXene Ti_(3)C_(2)T_(x) metasurface absorber in the THz band.The proposed metamaterial structure is made up of a square-shaped array of MXene that is 50 nmthick and is placed on top of a silicon substrate.The bottom surface of the silicon is metalized with gold to reduce the transmission and ultimately enhance the absorption at 1–3 THz.The symmetric adjacent space between theMXene array results in a widening of bandwidth.The proposed metasurface achieves 96%absorption under normal illumination of the incident source and acquires an average of 25 dB shielding at 1 THz bandwidth,with the peak shielding reaching 65 dB.The results show that 2D MXene-based stacked metasurfaces can be proven in the realization of low-cost devices for THz shielding and sensing applications.
基金This work was supported by Universidad Técnica Particular de Loja(UTPL-Ecuador)under the project:“Análisis de las propiedades térmicas del grafeno y zeolite”,Grant No.:PROY_INV_QU_2022_362.T.T.,M.G.,and C.V.G.wish to thank the Ecuadorian National Department of Sciences and Technology(SENESCYT).This work was partially supported by LNF-INFN:Progetto HPSWFOOD Regione Lazio-CUP I35F20000400005.
文摘Germanene nanostrips(GeNSs)have garnered significant attention in modern semiconductor technology due to their exceptional physical characteristics,positioning them as promising candidates for a wide range of applications.GeNSs exhibit a two-dimensional(buckled)honeycomb-like lattice,which is similar to germanene but with controllable bandgaps.The modeling of GeNSs is essential for developing appropriate synthesis methods as it enables understanding and controlling the growth process of these systems.Indeed,one can adjust the strip width,which in turn can tune the bandgap and plasmonic response of the material to meet specific device requirements.In this study,the objective is to investigate the electronic behav-ior and THz plasmon features of GeNSs(≥100 nm wide).A semi-analytical model based on the charge-carrier velocity of free-standing germanene is utilized for this purpose.The charge-carrier velocity of freestanding germanene is determined through the GW approximation(V_(F)=0.702×10^(6)m·s^(−1)).Within the width range of 100 to 500 nm,GeNSs exhibit narrow bandgaps,typi-cally measuring only a few meV.Specifically,upon analysis,it was found that the bandgaps of the investigated GeNSs ranged between 29 and 6 meV.As well,these nanostrips exhibit√q-like plasmon dispersions,with their connected plasmonic fre-quency(≤30 THz)capable of being manipulated by varying parameters such as strip width,excitation plasmon angle,and sam-ple quality.These manipulations can lead to frequency variations,either increasing or decreasing,as well as shifts towards larger momentum values.The outcomes of our study serve as a foundational motivation for future experiments,and further con-firmation is needed to validate the reported results.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB2804602)Shanghai Pujiang Program(Grant No.21PJD048).
文摘Color filters in different surroundings inherently suffer from angular sensitivity,which hinders their practical applications.Here,we present an angle-insensitive plasmonic filter that can produce different color responses to different surrounding environments.The color filters are based on a two-dimensional periodically and randomly distributed silver nanodisk array on a silica substrate.The proposed plasmonic color filters not only produce bright colors by altering the diameter of the Ag nanodisk,but also achieve continuous color palettes by changing the surrounding environment.Due to the weak coupling between the metallic nanodisks,the plasmonic color filters can enable good incident angle-insensitive properties(up to 30°).The strategy presented here could exhibit robust and promising applicability in anti-counterfeiting and imaging technologies.
基金jointly supported by the National Natural Science Foundation of China (no. 62105142)Natural Science Foundation of Jiangsu Province (BK20220068)+1 种基金the Center Fundamental Research Funds for the Central UniversitiesEntrepreneurship and Innovation Program of Jiangsu Province (JSSCBS20210002)。
文摘Interfacial solar steam generation(ISSG)is a novel and potential solution to global freshwater crisis.Here,based on a facile sol-gel fabrication process,we demonstrate a highly scalable Janus aramid nanofiber aerogel(JANA)as a high-efficiency ISSG device.JANA performs near-perfect broadband optical absorption,rapid photothermal conversion and effective water transportation.Owning to these features,efficient desalination of salty water and purification of municipal sewage are successfully demonstrated using JANA.In addition,benefiting from the mechanical property and chemical stability of constituent aramid nanofibers,JANA not only possesses outstanding flexibility and fire-resistance properties,but its solar steaming efficiency is also free from the influences of elastic deformations and fire treatments.We envision JANA provides a promising platform for mass-production of high-efficiency ISSG devices with supplementary capabilities of convenient transportation and long-term storage,which could further promote the realistic applications of ISSG technology.
基金the National Natural Science Foundation of China(Grant Nos.12274054 and 12074054)the Fundamental Research Funds for the Central Universities(Grant No.DUT21LK06).
文摘Relationship of plasmonic properties of multiple clusters to molecular interactions and properties of a single cluster or molecule have become increasingly important due to the continuous emergence of molecular and cluster devices or systems.A hybrid phenomenon similar to plasmonic nanoparticle hybridization exists between two molecules with plasmon excitation modes.We use linear-response time-dependent density functional theory,real-time propagation time-dependent density functional theory,the plasmonicity index,and transition contribution maps(TCMs)to identify the plasmon excitation modes for the linear polyenes octatetraene with–OH and–NH_(2)groups and analyze the hybridization characteristics using charge transitions.The results show that molecular plasmon hybridization exists when the two molecules are coupled.The TCM analysis shows that the plasmon modes and hybridization result from collective and single-particle excitation.The plasmon mode is stronger,and the individual properties of the molecules are maintained after coupling when there is extra charge depose in the molecules because the electrons are moving in the molecules.This study provides new insights into the molecular plasmon hybridization of coupled molecules.
基金Project supported by the National Natural Science Foundation of China (Grant No.12074054)the Fundamental Research Funds for the Central Universities,China (Grant No.DUT21LK06)。
文摘Owing to the good adjustability and the strong near-field enhancement,surface plasmons are widely used in optical force trap,thus the optical force trap can achieve excellent performance.Here,we use the Laguerre–Gaussian beam and a plasmonic gold ring to separate enantiomers by the chiral optical force.Along with the radial optical force that traps the particles,there is also a chirality-sign-sensitive lateral force arising from the optical spin angular momentum,which is caused by the interaction between optical orbit angular momentum and gold ring structure.By selecting a specific incident wavelength,the strong angular scattering and non-chiral related azimuthal optical force can be suppressed.Thus the chiral related azimuthal optical force can induce an opposite orbital rotation of the trapped particles with chirality of different sign near the gold ring.This work proposes an effective approach for catchingand separating chiral enantiomers.
基金We acknowledge the financial support by the National Natural Science Foundation of China(91623105 and 52005175)Natural Science Foundation of Hunan Province of China(2020JJ5059).
文摘Simple and efficient nanofabrication technology with low cost and high flexibility is indispensable for fundamental nanoscale research and prototyping.Lithography in the near field using the surface plasmon polariton(i.e.,plasmonic lithography)provides a promising solution.The system with high stiffness passive nanogap control strategy on a high-speed rotating substrate is one of the most attractive highthroughput methods.However,a smaller and steadier plasmonic nanogap,new scheme of plasmonic lens,and parallel processing should be explored to achieve a new generation high resolution and reliable efficient nanofabrication.Herein,a parallel plasmonic direct-writing nanolithography system is established in which a novel plasmonic flying head is systematically designed to achieve around 15 nm minimum flying-height with high parallelism at the rotating speed of 8–18 m·s^(-1).A multi-stage metasurface-based polarization insensitive plasmonic lens is proposed to couple more power and realize a more confined spot compared with conventional plasmonic lenses.Parallel lithography of the nanostructures with the smallest(around 26 nm)linewidth is obtained with the prototyping system.The proposed system holds great potential for high-freedom nanofabrication with low cost,such as planar optical elements and nano-electromechanical systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.61172044)the Natural Science Foundation of Hebei Province,China(Grant No.F2014501150)
文摘A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong field enhancement in the air gap region and low propagation loss, which enables the realization of lasing at the deep subwavelength scale.By optimizing the geometric parameters of the structure, a minimal lasing threshold is achieved while maintaining the capacity of ultra-deep subwavelength mode confinement. Compared with the previous coupled nanowire pair based hybrid plasmonic structure, a lower threshold can be obtained with the same geometric parameters. The proposed nanolaser can be integrated into a miniature chip as a nanoscale light source and has the potential to be widely used in optical communication and optical sensing technology.
基金Project supported by the ONR MURI(Grant No.N00014-10-1-0942)
文摘The rise of plasmonic metamaterials in recent years has unveiled the possibility of revolutionizing the entire field of optics and photonics, challenging well-established technological limitations and paving the way to innovations at an unprecedented level To capitalize the disruptive potential of this rising field of science and technology, it is important to be able to combine the richness of optical phenomena enabled by nanoplasmonics in order to realize metamaterial components, devices, and systems of increasing complexity. Here, we review a few recent research directions in the field of plasmonic metamaterials, which may foster further advancements in this research area. We will discuss the anomalous scattering features enabled by plasmonic nanoparticles and nanoclusters, and show how they may represent the fundamental building blocks of complex nanophotonic architectures. Building on these concepts, advanced components can be designed and operated, such as optical nanoantennas and nanoantenna arrays, which, in turn, may be at the basis of metasurface devices and complex systems. Following this path, from basic phenomena to advanced functionalities, the field of plasmonic metamaterials offers the promise of an important scientific and technological impact, with applications spanning from medical diagnostics to clean energy and information processing.
基金supported by the National Natural Science Foundation of China(41573118)Research Foundation of Education Bureau of Hunan Province,China(14B177)Special Project of Xiangtan University~~
文摘A novel plasmonic photo‐Fenton catalyst of Ag/AgCl/Fe‐S was synthesized by ion exchange and photoreduction methods.The obtained catalyst was characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,scanning electron microscope imaging,and Brunauer‐Emmett‐Teller measurements.Moreover,the photocatalytic activity of Ag/AgCl/Fe‐S was investigated for its degradation activity towards bisphenol A(BPA)as target pollutant under visible light irradiation.The effects of H2O2concentration,pH value,illumination intensity,and catalyst dosage on BPA degradation were examined.Our results indicated that the Ag/AgCl material was successfully loaded onto Fe‐sepiolite and showed a high photocatalytic activity under illumination by visible light.Furthermore,active species capture experiments were performed to explore the photocatalytic mechanism of the Ag/AgCl/Fe‐S in this heterogeneous photo‐Fenton process,where the major active species included hydroxyl radicals(?OH)and holes(h+).