Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control sy...Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control systems,such as Attribute-Based Access Control(ABAC)and Role-Based Access Control(RBAC),are limited in their ability to enforce access decisions due to the variability and dynamism of attributes related to users and resources.This paper proposes a method for enforcing access decisions that is adaptable and dynamic,based on multilayer hybrid deep learning techniques,particularly the Tabular Deep Neural Network Tabular DNN method.This technique transforms all input attributes in an access request into a binary classification(allow or deny)using multiple layers,ensuring accurate and efficient access decision-making.The proposed solution was evaluated using the Kaggle Amazon access control policy dataset and demonstrated its effectiveness by achieving a 94%accuracy rate.Additionally,the proposed solution enhances the implementation of access decisions based on a variety of resource and user attributes while ensuring privacy through indirect communication with the Policy Administration Point(PAP).This solution significantly improves the flexibility of access control systems,making themmore dynamic and adaptable to the evolving needs ofmodern organizations.Furthermore,it offers a scalable approach to manage the complexities associated with the BYOD environment,providing a robust framework for secure and efficient access management.展开更多
The global view of firewall policy conflict is important for administrators to optimize the policy.It has been lack of appropriate firewall policy global conflict analysis,existing methods focus on local conflict dete...The global view of firewall policy conflict is important for administrators to optimize the policy.It has been lack of appropriate firewall policy global conflict analysis,existing methods focus on local conflict detection.We research the global conflict detection algorithm in this paper.We presented a semantic model that captures more complete classifications of the policy using knowledge concept in rough set.Based on this model,we presented the global conflict formal model,and represent it with OBDD(Ordered Binary Decision Diagram).Then we developed GFPCDA(Global Firewall Policy Conflict Detection Algorithm) algorithm to detect global conflict.In experiment,we evaluated the usability of our semantic model by eliminating the false positives and false negatives caused by incomplete policy semantic model,of a classical algorithm.We compared this algorithm with GFPCDA algorithm.The results show that GFPCDA detects conflicts more precisely and independently,and has better performance.展开更多
基金partly supported by the University of Malaya Impact Oriented Interdisci-plinary Research Grant under Grant IIRG008(A,B,C)-19IISS.
文摘Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control systems,such as Attribute-Based Access Control(ABAC)and Role-Based Access Control(RBAC),are limited in their ability to enforce access decisions due to the variability and dynamism of attributes related to users and resources.This paper proposes a method for enforcing access decisions that is adaptable and dynamic,based on multilayer hybrid deep learning techniques,particularly the Tabular Deep Neural Network Tabular DNN method.This technique transforms all input attributes in an access request into a binary classification(allow or deny)using multiple layers,ensuring accurate and efficient access decision-making.The proposed solution was evaluated using the Kaggle Amazon access control policy dataset and demonstrated its effectiveness by achieving a 94%accuracy rate.Additionally,the proposed solution enhances the implementation of access decisions based on a variety of resource and user attributes while ensuring privacy through indirect communication with the Policy Administration Point(PAP).This solution significantly improves the flexibility of access control systems,making themmore dynamic and adaptable to the evolving needs ofmodern organizations.Furthermore,it offers a scalable approach to manage the complexities associated with the BYOD environment,providing a robust framework for secure and efficient access management.
基金supported by the National Nature Science Foundation of China under Grant No.61170295 the Project of National ministry under Grant No.A2120110006+2 种基金 the Co-Funding Project of Beijing Municipal Education Commission under Grant No.JD100060630 the Beijing Education Committee General Program under Grant No. KM201211232010 the National Nature Science Foundation of China under Grant NO. 61370065
文摘The global view of firewall policy conflict is important for administrators to optimize the policy.It has been lack of appropriate firewall policy global conflict analysis,existing methods focus on local conflict detection.We research the global conflict detection algorithm in this paper.We presented a semantic model that captures more complete classifications of the policy using knowledge concept in rough set.Based on this model,we presented the global conflict formal model,and represent it with OBDD(Ordered Binary Decision Diagram).Then we developed GFPCDA(Global Firewall Policy Conflict Detection Algorithm) algorithm to detect global conflict.In experiment,we evaluated the usability of our semantic model by eliminating the false positives and false negatives caused by incomplete policy semantic model,of a classical algorithm.We compared this algorithm with GFPCDA algorithm.The results show that GFPCDA detects conflicts more precisely and independently,and has better performance.