Soluble poly(3-hexyl-2,5-thienylene vinylene) (PHTV) was readily synthesized from thiophene in a yield better than that of the precursor method to prepare poly(thienylene vinylene) (PTV). The bandgap of the polymer is...Soluble poly(3-hexyl-2,5-thienylene vinylene) (PHTV) was readily synthesized from thiophene in a yield better than that of the precursor method to prepare poly(thienylene vinylene) (PTV). The bandgap of the polymer is about 1.8 eV, which is comparable with that of PTV. Owing to the introduction of alkyl side groups onto the backbone of the polymer, it can be dissolved in common organic solvents such as chloroform, THF and toluene. The synthesis of soluble PHTV is a very important approach to preventing oxidation and to improving the properties and the processbility of the PTV. The existence of alkyl side groups in PHTV does not affect its, bandgap and thermal properties as compared with PTV. After doping with FeCl3, the conductivity of PHTV is as high as 1.1 x 10(-2) S/cm. The soluble PHTV can be easily transformed into thin film with much better quality than that of the PTV film prepared by the traditional precursor method, which is very important for fabricating devices with good properties.展开更多
Photochemical reactions of poly(3-butoxythiophene-2,5-diyl) with chloroform under irradiation with light were studied. The reactions were separately carried out under air, oxygen, and nitrogen. The obtained results sh...Photochemical reactions of poly(3-butoxythiophene-2,5-diyl) with chloroform under irradiation with light were studied. The reactions were separately carried out under air, oxygen, and nitrogen. The obtained results showed that this reaction belongs to the pseudo-first-order reaction with a rate constant kobs of 1.4×10?5 s?1 at room temperature. The presence or absence of air, oxygen, and nitrogen did not have obvious effects on the reaction rate under irradiation with light.展开更多
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa...Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.展开更多
Amorphous poly (L-2-hydroxy-3-phenylpropanoic acid) (PLHPPA) was synthesized by the microwave-assisted polycondensation of L-2-hydroxy-3-phenylpropanoic acid (LHPPA). The weight average molar mass (Mw) of PLHPPA range...Amorphous poly (L-2-hydroxy-3-phenylpropanoic acid) (PLHPPA) was synthesized by the microwave-assisted polycondensation of L-2-hydroxy-3-phenylpropanoic acid (LHPPA). The weight average molar mass (Mw) of PLHPPA ranged from 3600 to 5300 and polydispersity index (Mw/Mn) from 1.0 to 1.4 when the reaction mixture was irradiated by microwave at 255, 340 and 510 w for 1 to 10 h, respectively.展开更多
To determine the possibility of blending 2, 3, 5-triiodobenzoic acid( TIBA) and poly( p-dioxanone)( PPDO) to produce X-ray visible PPDO filaments,melt-blended PPDO with different concentrations of TIBA was obtained. S...To determine the possibility of blending 2, 3, 5-triiodobenzoic acid( TIBA) and poly( p-dioxanone)( PPDO) to produce X-ray visible PPDO filaments,melt-blended PPDO with different concentrations of TIBA was obtained. Several radiopaque filaments of PPDO polymer filled with radiopaque TIBA particles were prepared via melt-blending. Material properties of the composite filaments were investigated using various material characterization techniques,including scanning electron microscope( SEM),thermogravimetric analysis( TGA),X-ray Diffraction( XRD),dynamic rheometry and micro-CT scan. In this article,the dispersion of TIBA in PPDO,the properties of the filament,and the ratio of PPDO and TIBA and the corresponding X-ray visibility in vivo were studied. SEM results showed the dispersion of the contrast imaging agent TIBA was relatively even in the PPDO polymer. Xray analysis in vitro confirmed the enhanced radiopacity of the filaments with respect to the pure PPDO filament. The presence of iodine element in the composite filament could allow the bioabsorbable material to be monitored in vivo, and made it potential to be used in biomedical applications.展开更多
A novel soluble π-conjugated polymer, poly [(3-acetylpyrrole-2, 5-diyl) p-(N, N-dimethylamino) azobenzylidene] (PAPDMAABE), was synthesized by condensation of 3-acetylpyrrole with 4-aldehyde-4'-dimethylaminoaz...A novel soluble π-conjugated polymer, poly [(3-acetylpyrrole-2, 5-diyl) p-(N, N-dimethylamino) azobenzylidene] (PAPDMAABE), was synthesized by condensation of 3-acetylpyrrole with 4-aldehyde-4'-dimethylaminoazobenzene (ADMAA). The chemical structure of PAPDMAABE was characterized by Fourier transform infrared spectroscopy (FTIR), ^1H-NMR, and UV-Vis-NIR spectra. Transmission electron microscope (TEM) analysis for PAPDMAABE indicates that part of PAPDMAABE is in crystal state, due to the short-range order of the polymer. Thermogravimetric analysis (TGA) curve shows that the polymer has good thermal stability and its decomposition temperature is 248℃. The optical band gap of PAPDMAABE obtained from the optical absorption spectrum is about 1.73 eV. The resonant third-order nonlinear optical property of PAPDMAABE at 532 nm was studied using degenerate four-wave mixing (DFWM) technique. The resonant third-order nonlinear optical susceptibility of the polymer is about 7.48×10^-8 esu.展开更多
基金This work was supported by the Chinese Academy of Sciences (No. KJCX2-H1).
文摘Soluble poly(3-hexyl-2,5-thienylene vinylene) (PHTV) was readily synthesized from thiophene in a yield better than that of the precursor method to prepare poly(thienylene vinylene) (PTV). The bandgap of the polymer is about 1.8 eV, which is comparable with that of PTV. Owing to the introduction of alkyl side groups onto the backbone of the polymer, it can be dissolved in common organic solvents such as chloroform, THF and toluene. The synthesis of soluble PHTV is a very important approach to preventing oxidation and to improving the properties and the processbility of the PTV. The existence of alkyl side groups in PHTV does not affect its, bandgap and thermal properties as compared with PTV. After doping with FeCl3, the conductivity of PHTV is as high as 1.1 x 10(-2) S/cm. The soluble PHTV can be easily transformed into thin film with much better quality than that of the PTV film prepared by the traditional precursor method, which is very important for fabricating devices with good properties.
文摘Photochemical reactions of poly(3-butoxythiophene-2,5-diyl) with chloroform under irradiation with light were studied. The reactions were separately carried out under air, oxygen, and nitrogen. The obtained results showed that this reaction belongs to the pseudo-first-order reaction with a rate constant kobs of 1.4×10?5 s?1 at room temperature. The presence or absence of air, oxygen, and nitrogen did not have obvious effects on the reaction rate under irradiation with light.
基金support of the Fundamental Research Funds for the Central Universities(No.2022CDJQY-004)the Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province(No.A2020202002).
文摘Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.
基金The study is financially supported by the Research foundation of State Education Department of China and National 973 Project of China.
文摘Amorphous poly (L-2-hydroxy-3-phenylpropanoic acid) (PLHPPA) was synthesized by the microwave-assisted polycondensation of L-2-hydroxy-3-phenylpropanoic acid (LHPPA). The weight average molar mass (Mw) of PLHPPA ranged from 3600 to 5300 and polydispersity index (Mw/Mn) from 1.0 to 1.4 when the reaction mixture was irradiated by microwave at 255, 340 and 510 w for 1 to 10 h, respectively.
基金Biomedical Textile Materials Science and Technolgy(111 Project),China(No.B07024)the Fundamendtal Research funds for the Central Universities,China(Samples 2232015A3-02,16D 110119)+1 种基金Science and Technology Support Program of Shanghai,China(No.16441903803)National Postdoctoral Foundation,China(No.2016M590299)
文摘To determine the possibility of blending 2, 3, 5-triiodobenzoic acid( TIBA) and poly( p-dioxanone)( PPDO) to produce X-ray visible PPDO filaments,melt-blended PPDO with different concentrations of TIBA was obtained. Several radiopaque filaments of PPDO polymer filled with radiopaque TIBA particles were prepared via melt-blending. Material properties of the composite filaments were investigated using various material characterization techniques,including scanning electron microscope( SEM),thermogravimetric analysis( TGA),X-ray Diffraction( XRD),dynamic rheometry and micro-CT scan. In this article,the dispersion of TIBA in PPDO,the properties of the filament,and the ratio of PPDO and TIBA and the corresponding X-ray visibility in vivo were studied. SEM results showed the dispersion of the contrast imaging agent TIBA was relatively even in the PPDO polymer. Xray analysis in vitro confirmed the enhanced radiopacity of the filaments with respect to the pure PPDO filament. The presence of iodine element in the composite filament could allow the bioabsorbable material to be monitored in vivo, and made it potential to be used in biomedical applications.
基金the National Natural Science Foundation of China for financial support of this work(No.60277002).
文摘A novel soluble π-conjugated polymer, poly [(3-acetylpyrrole-2, 5-diyl) p-(N, N-dimethylamino) azobenzylidene] (PAPDMAABE), was synthesized by condensation of 3-acetylpyrrole with 4-aldehyde-4'-dimethylaminoazobenzene (ADMAA). The chemical structure of PAPDMAABE was characterized by Fourier transform infrared spectroscopy (FTIR), ^1H-NMR, and UV-Vis-NIR spectra. Transmission electron microscope (TEM) analysis for PAPDMAABE indicates that part of PAPDMAABE is in crystal state, due to the short-range order of the polymer. Thermogravimetric analysis (TGA) curve shows that the polymer has good thermal stability and its decomposition temperature is 248℃. The optical band gap of PAPDMAABE obtained from the optical absorption spectrum is about 1.73 eV. The resonant third-order nonlinear optical property of PAPDMAABE at 532 nm was studied using degenerate four-wave mixing (DFWM) technique. The resonant third-order nonlinear optical susceptibility of the polymer is about 7.48×10^-8 esu.