期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Preparation and Drug-Release Property of Polycaprolactone (PCL)/Polyglycolic Acid (PGA) Composite Masterbatch with Drug of Tea Polyphenols (TPs)
1
作者 吴改红 刘淑强 +6 位作者 杨雅茹 莫易涵 李杰特 李静静 张菂 杨智超 陆东东 《Journal of Donghua University(English Edition)》 CAS 2023年第3期277-283,共7页
In order to effectively control the drug-release rate of medical textiles,biodegradable polycaprolactone(PCL) and polyglycolic acid(PGA) were blended at various mass ratios to prepare composite masterbatches for medic... In order to effectively control the drug-release rate of medical textiles,biodegradable polycaprolactone(PCL) and polyglycolic acid(PGA) were blended at various mass ratios to prepare composite masterbatches for medical textiles.The surface morphology and the chemical structure of the masterbatches were analyzed.The crystallization,mass losses,strengths and drug-release rates of the composite masterbatches at different PCL/PGA mass ratios were explored.The results show that the degradation rate of the PGA carrier is obvious higher than that of the PCL carrier,and PCL,PGA and the tea polyphenol(TP) drug just physically mix without chemical reaction.During the degradation,the strength of the composite masterbatches gradually decreases.In addition,the drug-release rates of composite masterbatches at different mass ratios are different,and the more the PGA in the composite masterbatches,the faster the drug release of the composite masterbatches.The drug-release rate of the composite masterbatches can be controlled by adjusting the contents of PCL and PGA. 展开更多
关键词 polycaprolactone(pcl) polyglycolic acid(PGA) tea polyphenol(TP) composite masterbatch drug release
下载PDF
Fabrication of Porous Polycaprolactone/Carboxymethylcellulose Scaffolds by using Salt Leaching Technique
2
作者 NOPPADOL Sriputtha FASAI Wiwatwongwana NATTAWIT Promma 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期455-459,共5页
The purpose of this work was to fabricate three-dimensional porous scaffolds by using the salt leaching technique.This technique is simple and it does not need the pressure or dislike expensive equipment.The study sel... The purpose of this work was to fabricate three-dimensional porous scaffolds by using the salt leaching technique.This technique is simple and it does not need the pressure or dislike expensive equipment.The study selected polycaprolactone blended with carboxymethylcellulose that is the additive.The ratios of them were derived from mixture design in Minitab program that was 98/2(P1),93.5/6.5(P2),89/11(P3),84.5/15.5(P4),and 80/20(P5),respectively.The scanning electron microscopy(SEM)was applied to assess the physical properties and the pore size dimension of the scaffold from SEM micrographs.The results of SEM present the scaffolds happened interconnected porous structures that are found in all of the P1-P5 samples.The pore size dimension of all sample scaffolds is in the range of 264.11-348.28μm.Whereas the largest and the smallest of pore size are the sample of P3 and P2,respectively,while the porosity ranges from 98.06%-98.88%that the sample of P5 is the greatest and the sample of P4 is the slightly lowest.In conclusion,the blended PCL/CMC scaffolds P1-P5 were formed by salt leaching technique suitable to use in tissue engineering application.However,the amount of CMC blended with PCL should be reasonable in order to adjust the hydrophilic of the scaffold. 展开更多
关键词 polycaprolactone(pcl) carboxymethylcellulose(CMC) salt leaching tissue engineering scaffolds
原文传递
Influence of Sorbitan Monooleate on Morphology and Drug Release Behavior of Emulsion Electrospinning Polycaprolactone Nanofibers 被引量:2
3
作者 彭晓 丁辛 +2 位作者 林刚 胡吉永 杨旭东 《Journal of Donghua University(English Edition)》 EI CAS 2017年第1期122-126,共5页
Ultrafine polycaprolactone(PCL)fibers containing watersoluble drug tetracycline hydrochloride(Tet)were prepared by emulsion electrospinning.Sorbitan monooleate(Span80)was added as an essential additive to form stable ... Ultrafine polycaprolactone(PCL)fibers containing watersoluble drug tetracycline hydrochloride(Tet)were prepared by emulsion electrospinning.Sorbitan monooleate(Span80)was added as an essential additive to form stable water/oil emulsions and fabricate fibers with core-sheath structure.Different concentrations of Span80(0-40 g/L)were used to investigate the stability of emulsion and size of dispersed droplets.The scanning electron microscope(SEM)images indicated that the morphology of the fibers with Span80 were beaded-free with diameters of 200-400 nm,and Span80 enhanced the spinnability of electrospinning solution.The laser scanning confocal microscope(LSCM)images indicated that Tet was well encapsulated into the core region of the PCL fibers.The transmission electron microscope(TEM)image showed the formation of core-sheath structure.The loading efficiency(LE)and entrapment efficiency(EE)of Tet were calculated and release profiles in artificial saliva buffer solution(pH=6.8)were also analyzed.The results revealed that LE and EE of fibers with Span80decreased with the increase of its concentration.Fibers with coresheath structure had a longer effective release lifetime than without Span80.The increase of Span80 resulted in higher hydrophilicity of fibers and faster release rate of Tet. 展开更多
关键词 polycaprolactone(pcl) nanofibers emulsion electrospinning core-sheath structure SPAN80 drug release behavior
下载PDF
Processing and Mechanical Characterization of Electro-spun Polycaprolactone Membrane Coated Hernia Mesh 被引量:1
4
作者 沈嘉丽 张佩华 鲁瑶 《Journal of Donghua University(English Edition)》 EI CAS 2018年第1期65-69,共5页
Composite hernia meshes designed in this paper consist of polypropylene( PP) knitted meshes and polycaprolactone( PCL)nanofiber membranes,which are produced by electro-spinning the solution composed of PCL as a solute... Composite hernia meshes designed in this paper consist of polypropylene( PP) knitted meshes and polycaprolactone( PCL)nanofiber membranes,which are produced by electro-spinning the solution composed of PCL as a solute and the mixture of dimethylformamide( DMF) and dichloromethane( DCM) as a solvent. The morphology and diameter of nanofibers in the membrane are well performed when the 15% PCL solution is electrospun under the condition of 18 k V,15 cm,0. 7 m L/h. The poresize of the membranes is less than 10 μm, where such kinds of arrangement are extremely compact to prevent the cells from growing in. The mechanical properties of the membrane with better arrangement state can reach 68. 8 c N/mm^2. The cytotoxicity test of the composite mesh demonstrates the nontoxicity of the materials.However,the bonding fastness between the membrane and the PP mesh is extremely unsubstantial. The better ways to bond PP mesh with PCL membranes should be discussed in the future. 展开更多
关键词 composite hernia mesh electro-spinning biomedical membrane polycaprolactone(pcl)
下载PDF
Preparation and Properties of PCL/PLA Shape Memory Composites 被引量:1
5
作者 张伟 黄婷婷 +1 位作者 仇何 张瑜 《Journal of Donghua University(English Edition)》 EI CAS 2017年第2期274-279,共6页
Poly(lactic acid)(PLA) was blended with various polycaprolactone(PCL) components through the melt blending process for toughening modification on PLA.The tensile testing,scanning electron microscope(SEM) and different... Poly(lactic acid)(PLA) was blended with various polycaprolactone(PCL) components through the melt blending process for toughening modification on PLA.The tensile testing,scanning electron microscope(SEM) and differential scanning calorimetry(DSC) were implemented to analyze mechanical properties,disperse morphology,thermal properties and compatibility of composite materials,respectively.The shape memory performance of PCL/PLA composites was also investigated.The results showed that the elongation at break of composites increased by 10 and 15 times than pure PLA with adding 20% and30% by weight of PCL,and the yield strength retention rates were77% and 67%,respectively.The SEM showed that PCL/PLA composite was a semi-compatible system.PCL particles could be evenly dispersed in the PLA at 20% or 30% by weight PCL content,and the particle size was very small.DSC results showed a decline in Tg and Tm whereas an increase in Td with the addition of PCL.The addition of PCL could improve the shape memory performance of PLA.The shape memory performance was enhanced with the PCL content increase,but decreased with the tensile strain increase.The best temperature for shape recovery was between 60 and 70 ℃,and the shape memory performance remained 80% after 5 times recycle. 展开更多
关键词 poly (lactic acid) (PLA) polycaprolactone(pcl) toughening shape memory
下载PDF
Quasi-in vivo corrosion behavior of AZ31B Mg alloy with hybrid MWCNTs-PEO/PCL based coatings
6
作者 Morteza Daavari Masoud Atapour +5 位作者 Marta Mohedano Hugo Mora Sánchez Juan Rodríguez-Hernández Endzhe Matykina Raul Arrabal Aboozar Taherizadeh 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第11期3217-3233,共17页
This study investigated the effects of multi-walled carbon nanotubes(MWCNTs) and polycaprolactone(PCL) on the quasi-in vivo corrosion behavior of AZ31B Mg alloy treated by plasma electrolytic oxidation(PEO). Thin(~2 ... This study investigated the effects of multi-walled carbon nanotubes(MWCNTs) and polycaprolactone(PCL) on the quasi-in vivo corrosion behavior of AZ31B Mg alloy treated by plasma electrolytic oxidation(PEO). Thin(~2 μm, PCTPCL4) and thick(~60 μm, PCTPCL6) PCL layers were applied only onto the MWCNTs-PEO coating(PCT) as it showed better corrosion performance. Findings reveal that incorporation of MWCNTs induced several structural and functional modifications in the PEO coating, such as increased roughness, a thicker inner barrier layer, and reduced hydrophilicity.Quasi-in vivo corrosion testing was carried out under controlled temperature, p H, and fluid flow in simulated body fluid(SBF) by electrochemical impedance spectroscopy(EIS) and hydrogen evolution experiments. EIS results revealed that, after 48 h immersion, a diffusion process controlled hydration of the ceramic coatings. Comparison of the collected hydrogen after 15 days of immersion in the quasi-in vivo environment revealed that the PEO and PCT ceramic coatings decreased hydrogen generation by up to 74% and 91%, respectively, compared to non-coated alloy.PCTPCL6 coating exhibited the lowest amount of collected hydrogen(0.2 m L/cm^(2)). The thick PCL layer delayed the onset of substrate corrosion for at least 120 h, reducing the corrosion rate by 85% compared with the PCT. 展开更多
关键词 AZ31B Mg alloy Plasma electrolyte oxidation(PEO) Multi-walled carbon nanotubes(MWCNTs) Quasi-in vivo condition polycaprolactone(pcl)
下载PDF
Strontium Substituted Nanohydroxyapatite Incorporated 3D Printing Scaffold for Bone Tissue Engineering
7
作者 刘顶华 聂伟 +4 位作者 陈良 王伟忠 陶玲 杜海波 何创龙 《Journal of Donghua University(English Edition)》 EI CAS 2018年第1期18-23,共6页
The customized implants which are composed of polycaprolactone( PCL) and strontium substituted nanohydroxyapatite( SrHA) were fabricated successfully by using fused deposition modeling( FDM),which is a simple 3 D prin... The customized implants which are composed of polycaprolactone( PCL) and strontium substituted nanohydroxyapatite( SrHA) were fabricated successfully by using fused deposition modeling( FDM),which is a simple 3 D printing technology for fabricating personalized products. The physical and chemical properties of composite scaffolds were characterized by transmission electron microscopy( TEM), Fourier transform infrared spectroscopy( FTIR), X-Ray diffraction( XRD) and inductively coupled plasma-atomic emission spectroscopy( ICPAES). The results suggested that strontium element was successfully doped into nanohydroxyapatite and all scaffolds showed the homogeneous network structure. Furthermore, the in vitro biocompatibility of the scaffolds was evaluated by cell counting kit-8( CCK-8) assay. The data indicated that the prepared scaffolds exhibited excellent biocompatibility to bone marrow mesenchymal stem cells( BMSCs). Besides,strontium element can be released from PCL-SrHA scaffolds in a sustained manner. Therefore,the 3 D printing PCL-SrHA scaffolds hold great potential for bone tissue engineering. 展开更多
关键词 3D printing strontium hydroxyapatite polycaprolactone(pcl) bone tissue engineering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部