期刊文献+
共找到148篇文章
< 1 2 8 >
每页显示 20 50 100
Three-dimensional pseudo-dynamic reliability analysis of seismic shield tunnel faces combined with sparse polynomial chaos expansion
1
作者 GUO Feng-qi LI Shi-wei ZOU Jin-Feng 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2087-2101,共15页
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ... To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability. 展开更多
关键词 reliability analysis shield tunnel face sparse polynomial chaos expansion modified pseudo-dynamic approach seismic stability assessment
下载PDF
Generalized polynomial chaos expansion by reanalysis using static condensation based on substructuring
2
作者 D.LEE S.CHANG J.LEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期819-836,共18页
This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a gen... This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs. 展开更多
关键词 forward uncertainty quantification(UQ) generalized polynomial chaos expansion(Gpce) static reanalysis method static condensation SUBSTRUCTURING
下载PDF
Sensitivity Analysis of Electromagnetic Scattering from Dielectric Targets with Polynomial Chaos Expansion and Method of Moments
3
作者 Yujing Ma Zhongwang Wang +2 位作者 Jieyuan Zhang Ruijin Huo Xiaohui Yuan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期2079-2102,共24页
In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is a... In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is applied to accurately solve the electric field integral equation(EFIE)of electromagnetic scattering from homogeneous dielectric targets.Within the bistatic radar cross section(RCS)as the research object,the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model.The corresponding sensitivity results are given by the further derivative operation,which is compared with those of the finite difference method(FDM).Several examples are provided to demonstrate the effectiveness of the proposed algorithm for sensitivity analysis of electromagnetic scattering from homogeneous dielectric targets. 展开更多
关键词 Adaptive polynomial chaos expansion method method of moments radar cross section electromagnetic scattering
下载PDF
基于PCE的系统参数化暂态稳定约束最优潮流
4
作者 刘颂凯 李正浩 +3 位作者 周倩 杨超 胡竞哲 阮肇华 《电网与清洁能源》 CSCD 北大核心 2024年第6期48-57,共10页
为更好地应对电力系统中存在的不确定参数给暂态稳定性带来的影响,提出了一种基于多项式混沌展开(polynomial chaos expansion,PCE)和随机伽辽金法(stochastic Galerkin method,SGM)的参数化暂态稳定约束最优潮流(parameterized transie... 为更好地应对电力系统中存在的不确定参数给暂态稳定性带来的影响,提出了一种基于多项式混沌展开(polynomial chaos expansion,PCE)和随机伽辽金法(stochastic Galerkin method,SGM)的参数化暂态稳定约束最优潮流(parameterized transient stability constrained optimal power flow,PTSCOPF)问题的求解方案。针对电力系统不确定参数建立PTSCOPF模型;基于PCE和SGM近似拟合参数化暂态稳定轨迹,将原始的微分代数方程组(differential algebraic equations,DAE)形式的PTSCOPF模型转化为代数方程组形式的参数化非线性规划(non-linear programming,NLP)问题;采用原始-对偶内点法求解该NLP问题。利用改进的新英格兰10机39节点系统算例进行了各项测试,仿真结果表明,所提方法能够实现系统在预想故障下保持暂态稳定的优化效果。 展开更多
关键词 暂态稳定约束最优潮流 多项式混沌展开 随机伽辽金法 不确定参数
下载PDF
Sparse Approximation of Data-Driven Polynomial Chaos Expansions: An Induced Sampling Approach
5
作者 Ling Guo Akil Narayan +1 位作者 Yongle Liu Tao Zhou 《Communications in Mathematical Research》 CSCD 2020年第2期128-153,共26页
One of the open problems in the field of forward uncertainty quantification(UQ)is the ability to form accurate assessments of uncertainty having only incomplete information about the distribution of random inputs.Anot... One of the open problems in the field of forward uncertainty quantification(UQ)is the ability to form accurate assessments of uncertainty having only incomplete information about the distribution of random inputs.Another challenge is to efficiently make use of limited training data for UQ predictions of complex engineering problems,particularly with high dimensional random parameters.We address these challenges by combining data-driven polynomial chaos expansions with a recently developed preconditioned sparse approximation approach for UQ problems.The first task in this two-step process is to employ the procedure developed in[1]to construct an"arbitrary"polynomial chaos expansion basis using a finite number of statistical moments of the random inputs.The second step is a novel procedure to effect sparse approximation via l1 minimization in order to quantify the forward uncertainty.To enhance the performance of the preconditioned l1 minimization problem,we sample from the so-called induced distribution,instead of using Monte Carlo(MC)sampling from the original,unknown probability measure.We demonstrate on test problems that induced sampling is a competitive and often better choice compared with sampling from asymptotically optimal measures(such as the equilibrium measure)when we have incomplete information about the distribution.We demonstrate the capacity of the proposed induced sampling algorithm via sparse representation with limited data on test functions,and on a Kirchoff plating bending problem with random Young’s modulus. 展开更多
关键词 Uncertainty quantification data-driven polynomial chaos expansions sparse approximation equilibrium measure induced measure
下载PDF
基于PCE法和最大熵法的船舶不确定性优化设计 被引量:3
6
作者 魏骁 李恒 黄晨冉 《中国舰船研究》 CSCD 北大核心 2023年第3期13-25,共13页
[目的]船舶不确定性优化设计(UDO)的关键在于不确定性的量化(UQ),传统的蒙特卡洛方法较为耗时且计算成本较高,故提出一种基于多项式混沌展开法(PCE)和最大熵法(MEM)的船舶UDO方法。[方法]首先,选取较低计算成本的PCE法来量化多个不确定... [目的]船舶不确定性优化设计(UDO)的关键在于不确定性的量化(UQ),传统的蒙特卡洛方法较为耗时且计算成本较高,故提出一种基于多项式混沌展开法(PCE)和最大熵法(MEM)的船舶UDO方法。[方法]首先,选取较低计算成本的PCE法来量化多个不确定参数作用下输出的随机性质;然后,根据正交多项式的特点,采用基于线性无关原则的改进概率配点法(IPCM)求解PCE系数;最后,利用推导的约束前4阶矩,结合最大熵法求解约束的概率密度函数(PDF),进而在失效域上积分得到UDO关注的约束失效概率。[结果]研究结果表明:改进概率配点法可以给出最优的概率配点数目,并显著减少样本点数量;基于PCE法和MEM法求解约束失效概率时,与蒙特卡洛法结果对比,其在不额外增加计算量的前提下亦可满足精度要求;散货船工程算例的优化结果验证了PCE法较常用的蒙特卡洛法在精度和效率上更具工程应用优势。[结论]该不确定性优化设计方法可以高效准确地实现船舶设计方案的稳健性和可靠性。 展开更多
关键词 不确定优化设计 不确定性量化 多项式混沌展开法 最大熵法 改进的概率配点法
下载PDF
基于多项式混沌展开的电力系统概率可用输电能力评估 被引量:2
7
作者 姜涛 李春晖 +2 位作者 张儒峰 陈厚合 李国庆 《中国电机工程学报》 EI CSCD 北大核心 2024年第2期489-503,I0005,共16页
大规模开发和利用风能有利于实现电力系统清洁低碳转型,是实现国家“碳达峰、碳中和”战略目标的重要技术手段,但风电出力的强不确定性对电力系统区域间可用输电能力(available transfer capability,ATC)评估带来了全新的挑战,传统用于... 大规模开发和利用风能有利于实现电力系统清洁低碳转型,是实现国家“碳达峰、碳中和”战略目标的重要技术手段,但风电出力的强不确定性对电力系统区域间可用输电能力(available transfer capability,ATC)评估带来了全新的挑战,传统用于求解计及风电出力不确定性的概率ATC评估模型在计算效率和计算精度方面均存在一定的不足。为此,该文提出一种基于多项式混沌展开(polynomialchaos expansion,PCE)的电力系统概率ATC评估方法,该方法首先构建基于机会约束的电力系统概率ATC评估模型;然后,根据风电出力预测误差的概率分布特征,选择对应的正交多项式为基函数以近似风电出力预测误差及电力网络中与之相关联的其他随机变量;进一步,借助Galerkin投影和基于一阶矩、二阶矩的机会约束转化方法,将所构建的机会约束模型的概率约束转化为确定性约束,实现基于机会约束的概率ATC评估模型向易于求解的确定性优化模型的转化;进而,将概率ATC评估模型的求解问题转化为ATC的最优多项式逼近系数的求解问题,根据求得的最优多项式逼近系数和选取的基函数计算电力系统ATC的概率分布特征;最后,通过修改后的PJM-5节点测试系统、IEEE-118节点测试系统及吉林西部电网实际算例验证了所提基于多项式混沌展开的电力系统概率ATC评估方法的准确性和有效性。 展开更多
关键词 可用输电能力 多项式混沌展开 概率模型 机会约束 不确定性分析
原文传递
基于多项式混沌展开的交直流系统全纯嵌入概率潮流计算方法
8
作者 李雪 付云跃 +1 位作者 姜涛 李国庆 《电力系统自动化》 EI CSCD 北大核心 2024年第18期177-188,共12页
为快速、准确量化分析风电出力不确定性对交直流电力系统潮流分布的影响,提出一种基于多项式混沌展开(PCE)的交直流电力系统全纯嵌入概率潮流计算方法。该方法首先根据风电出力的概率分布特征选择最优正交基函数,构造近似风电出力概率... 为快速、准确量化分析风电出力不确定性对交直流电力系统潮流分布的影响,提出一种基于多项式混沌展开(PCE)的交直流电力系统全纯嵌入概率潮流计算方法。该方法首先根据风电出力的概率分布特征选择最优正交基函数,构造近似风电出力概率分布特征的PCE表达式;其次,将该PCE表达式引入交直流电力系统的全纯嵌入潮流方程中,构建基于PCE的交直流电力系统全纯嵌入概率潮流计算模型;再次,通过Galerkin投影将所构建的全纯嵌入概率潮流计算模型转化为高维确定性全纯嵌入潮流计算模型;然后,借助确定性全纯嵌入潮流模型求解方法,实现对所转化的高维确定性全纯嵌入潮流模型的求解,并根据所得PCE逼近系数计算交直流电力系统潮流的概率分布特征;最后,通过修改的PJM 5节点、IEEE 30节点和IEEE 118节点交直流测试系统算例验证所提方法的准确性和有效性。 展开更多
关键词 概率潮流 多项式混沌展开 全纯嵌入 Galerkin投影 交直流电力系统 不确定性
下载PDF
基于混合蒙特卡洛/多项式混沌展开方法的多参数随机等离子体不确定性分析
9
作者 刘江凡 刘晓妹 +3 位作者 李铮 焦子涵 徐聪 席晓莉 《电波科学学报》 CSCD 北大核心 2024年第1期39-45,共7页
多项式混沌展开(polynomial chaos expansion, PCE)方法对于分析随机等离子体电磁传播不确定性已经展示出了相当大的潜力。然而,由于构建多项式混沌模型的计算量随着不确定性输入维数的增加呈指数增长,数值模拟耗时长,导致“维数灾难”... 多项式混沌展开(polynomial chaos expansion, PCE)方法对于分析随机等离子体电磁传播不确定性已经展示出了相当大的潜力。然而,由于构建多项式混沌模型的计算量随着不确定性输入维数的增加呈指数增长,数值模拟耗时长,导致“维数灾难”问题。因此,本文基于非侵入式多项式混沌(non-intrusive polynomial chaos,NIPC)方法,采用混合蒙特卡洛(Monte Carlo, MC)/PCE方法研究了多层等离子体平板电子密度不确定性对透射系数的影响,并验证了所提出方法的实用性。与MC方法相比,本文方法可以大大加快仿真的速度,有效缓解了多项式展开项的数量随着随机变量维数的增加而快速增加的缺点,同时大大降低了MC方法的仿真次数,有利于电磁模型的多参数不确定性分析。 展开更多
关键词 非侵入式多项式混沌(NIPC) 不确定性分析 蒙特卡洛(MC)方法
下载PDF
基于多项式混沌的机床几何误差灵敏度分析
10
作者 郑华林 赵兴 +2 位作者 胡腾 魏小建 王小虎 《航空制造技术》 CSCD 北大核心 2024年第6期24-31,共8页
为解决目前灵敏度分析方法普遍存在的样本需求量大且计算效率不高的问题,提出了一种基于多项式混沌展开的全局灵敏度分析方法。首先,以AC型双转台五轴数控机床为研究对象,根据旋量理论建立了完备的空间误差模型。其次,构建了机床几何误... 为解决目前灵敏度分析方法普遍存在的样本需求量大且计算效率不高的问题,提出了一种基于多项式混沌展开的全局灵敏度分析方法。首先,以AC型双转台五轴数控机床为研究对象,根据旋量理论建立了完备的空间误差模型。其次,构建了机床几何误差的多项式混沌展开模型,采用正交匹配追踪实现模型的稀疏化,并给出了基于该方法的Sobol灵敏度指数。进而,对五轴数控机床几何误差进行了实例分析,测量并统计出41项误差的近似概率分布,分析了影响各方向位姿误差分量的关键几何误差。通过与蒙特卡洛法和拉丁超立方法进行对比,多项式混沌展开方法的正确性得到验证,且在不降低计算精度的前提下,样本量从1×10^(5)降低到1×10^(3),计算时间分别减少96.8%和98.1%,计算效率显著提高。 展开更多
关键词 五轴数控机床 几何误差 灵敏度分析 多项式混沌展开 旋量理论
下载PDF
SENSITIVITY ANALYSIS OF BUILDING ENERGY PERFORMANCE BASED ON POLYNOMIAL CHAOS EXPANSION
11
作者 Wei Tian Chuanqi Zhu +2 位作者 Pieter de Wilde Jiaxin Shi Baoquan Yin 《Journal of Green Building》 2020年第4期173-183,共11页
Global sensitivity analysis based on polynomial chaos expansion(PCE)shows interesting characteristics,including reduced simulation runs for computer models and high interpretability of sensitivity results.This paper e... Global sensitivity analysis based on polynomial chaos expansion(PCE)shows interesting characteristics,including reduced simulation runs for computer models and high interpretability of sensitivity results.This paper explores these features of the PCE-based sensitivity analysis using an office building as a case study with the EnergyPlus simulation program.The results indicate that the predictive performance of PCE models is closely correlated with the stability of the sensitivity index,depend-ing on sample number and expansion degree.Therefore,it is necessary to carefully assess model accuracy of PCE models and evaluate convergence of the sensitivity index when using PCE-based sensitivity analysis.It is also found that more simula-tion runs of building energy models are required for a higher expansion degree of the PCE model to obtain a reliable sensitivity index.A bootstrap technique with a random sample can be used to construct confidence intervals for sensitivity indicators in building energy assessment to provide robust sensitivity rankings. 展开更多
关键词 sensitivity analysis building energy polynomial chaos expansion model accuracy
下载PDF
翼吊式飞机跨声速气动特性的不确定性分析
12
作者 莫邵昌 张鑫帅 +2 位作者 谢芳芳 季廷炜 郑耀 《气体物理》 2024年第4期27-38,共12页
针对随机不确定性可能带来翼吊式飞机严重气动性能波动的问题,提出了一种基于主动学习加点策略的Gauss过程回归(Gaussian process regression,GPR)代理模型方法用于不确定性分析,该主动学习加点策略能够有效地降低模型不确定性,提高不... 针对随机不确定性可能带来翼吊式飞机严重气动性能波动的问题,提出了一种基于主动学习加点策略的Gauss过程回归(Gaussian process regression,GPR)代理模型方法用于不确定性分析,该主动学习加点策略能够有效地降低模型不确定性,提高不确定预测的精度。关注来流不确定性输入,分别使用Smolyak稀疏网格多项式混沌展开(polynomial chaos expansion,PCE)方法和基于主动学习加点策略的GPR代理模型方法,结合Sobol灵敏度分析对翼-身-短舱-挂架几何进行了不确定性分析。结果表明,在跨声速条件下,攻角和Mach数的不确定性会引起翼吊式飞机升力系数和阻力系数的剧烈波动,其中升力系数的波动同时受攻角和Mach数的影响,阻力系数的波动主要由Mach数决定。 展开更多
关键词 不确定性分析 Gauss过程回归(GPR) 多项式混沌展开(pce) 灵敏度分析 气动性能
下载PDF
基于任意概率分布建模与改进混沌多项式展开的概率潮流方法
13
作者 李可萌 王毅 +1 位作者 闪鑫 陆娟娟 《电力系统自动化》 EI CSCD 北大核心 2024年第18期167-176,共10页
针对目前概率潮流难以兼顾准确度和速度,且缺乏有效处理任意概率分布源荷数据的手段,提出了基于任意概率分布建模策略和改进混沌多项式展开的概率潮流方法。首先,将系统输入量拟合为概率分布类型库中的概率分布,基于赤池信息量准则选取... 针对目前概率潮流难以兼顾准确度和速度,且缺乏有效处理任意概率分布源荷数据的手段,提出了基于任意概率分布建模策略和改进混沌多项式展开的概率潮流方法。首先,将系统输入量拟合为概率分布类型库中的概率分布,基于赤池信息量准则选取最优分布,比较最优分布和非参核密度估计的似然估计值确定最终概率分布。其次,为提升最小角回归广义混沌多项式展开的准确度,提出应用伪谱法和矩匹配法获取备选点集合,并使用组合概率窗对其筛选获得最优备选点。然后,对原始概率空间执行拉丁超立方采样获取补充配置点,并与最优备选点结合后得到最终配置点。所提方法在IEEE 30、IEEE 118节点算例中得到验证,在相近耗时下,所提方法的准确度较不确定量化计算框架UQLab推荐算法有显著提升。 展开更多
关键词 概率潮流 概率分布建模 参数估计 混沌多项式展开 最小角回归 不确定性量化
下载PDF
不确定性结构的非高斯模态参数模拟方法
14
作者 平梦浩 张文华 唐亮 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第9期81-92,共12页
结构不确定性广泛存在于实际工程问题中,考虑不确定因素对模态参数的影响对提升结构动力学分析的鲁棒性具有重要意义。在涉及不确定性线性结构随机模态参数求解或估计的方法中,模态参数通常被视为服从高斯分布,它们之间的相关性也通常... 结构不确定性广泛存在于实际工程问题中,考虑不确定因素对模态参数的影响对提升结构动力学分析的鲁棒性具有重要意义。在涉及不确定性线性结构随机模态参数求解或估计的方法中,模态参数通常被视为服从高斯分布,它们之间的相关性也通常被忽略。然而,随机模态参数的高斯和独立性假设会造成模拟误差,影响结构动力学响应预测的鲁棒性。针对这一问题,分别针对离散结构和连续结构提出了两种随机模态参数模拟方法。对于离散结构,由于振型是离散的,随机模态参数被视为相关随机变量,根据它们的统计特征,采用相关多项式混沌展开方法(c-PCE),将其表示为独立标准高斯变量的函数,可以实现非高斯性和相关性的模拟;对于连续结构,随机振型被视为相关随机场,利用改进的正交级数展开法可以将其表示为离散随机振型的函数,将它们与随机固有频率相结合,构造一组新的相关随机变量,采用c-PCE,可以实现利用标准高斯变量模拟振型随机场和随机频率。最后,分别以桁架结构和平板结构为例,考虑由材料参数波动引起的模态参数的非高斯性,利用提出的随机模态参数模拟方法,可以准确模拟模态参数的统计特征,进一步还能够预测结构的随机响应。证明了提出的方法对随机模态参数的模拟精度,以及考虑参数相关性的必要性。 展开更多
关键词 随机模态参数 相关变量 随机场 多项式混沌展开 正交级数展开
下载PDF
二阶混沌多项式的概率密度精确计算及其结构可靠度应用
15
作者 刘腾 翁叶耀 +1 位作者 张玄一 赵衍刚 《防灾减灾工程学报》 CSCD 北大核心 2024年第1期28-38,共11页
混沌多项式展开是一种广泛使用的方法,用于建立功能函数的代理模型,以方便对随机结构进行不确定性量化及可靠度分析。然而,在某些可靠度分析问题中经常需要混沌多项式展开模型的概率密度函数作为随机变量的完整表达,但在一般情况下难以... 混沌多项式展开是一种广泛使用的方法,用于建立功能函数的代理模型,以方便对随机结构进行不确定性量化及可靠度分析。然而,在某些可靠度分析问题中经常需要混沌多项式展开模型的概率密度函数作为随机变量的完整表达,但在一般情况下难以准确计算混沌多项式展开模型的概率密度函数。为研究二阶混沌多项式展开模型的概率密度函数计算方法,通过正交变换消除模型中的交叉项,推导出二阶混沌多项式展开其特征函数的显式表达式,然后利用快速傅里叶变换求得二阶混沌多项式展开的概率密度函数,并通过数值算例验证了所提方法在结构可靠度应用中的准确性和适用性。研究结果表明:所提方法能获得二阶混沌多项式模型的概率密度函数与累积分布函数,计算结果与理论精确解吻合,获得的非中心卡方分布的累积分布函数尾部可与精确值在10^(-8)水平上保持一致,且适用于高维情形。同时,所提方法能高效准确地给出不同响应阈值下的结构失效概率,即使是在10^(-8)水平上的小失效概率情形。相较于前四阶矩方法,所提方法计算精度更高,对于输出变量具有强非高斯性的情况依然适用。此外,由于二阶混沌多项式展开模型代理强非线性功能函数存在一定误差,因此所提方法对于强非线性问题存在一定局限性。 展开更多
关键词 结构可靠度 混沌多项式展开 特征函数 概率密度函数 傅里叶变换
原文传递
基于概率模型和数据驱动的动力总成悬置系统可靠性优化
16
作者 吕辉 张家明 +1 位作者 黄晓婷 上官文斌 《汽车工程》 EI CSCD 北大核心 2024年第3期456-463,488,共9页
针对电动汽车动力总成悬置系统(PMS)一部分参数为概率变量,一部分参数为离散数据的复杂不确定情形,开展了基于概率模型和数据驱动的电动汽车PMS可靠性优化设计研究。首先,基于任意多项式混沌(APC)展开和广义最大熵原理推导了一种求解该... 针对电动汽车动力总成悬置系统(PMS)一部分参数为概率变量,一部分参数为离散数据的复杂不确定情形,开展了基于概率模型和数据驱动的电动汽车PMS可靠性优化设计研究。首先,基于任意多项式混沌(APC)展开和广义最大熵原理推导了一种求解该复杂不确定情形下PMS响应不确定性和可靠性的高效方法;然后,基于蒙特卡洛抽样,给出了该复杂不确定情形下求解PMS响应不确定性和可靠性的参考方法;接着,提出了一种基于APC展开法的灵敏度分析方法,进一步提出了一种考虑响应不确定性和可靠性的PMS优化设计方法;最后,通过应用算例验证方法的有效性,并对系统进行了灵敏度分析和可靠性优化。结果表明,所提出的方法可有效地处理电动汽车PMS一部分参数为概率变量、一部分参数为离散数据的复杂不确定情形,并能可靠地优化该情形下的系统固有特性,且方法具有较高的计算精度和计算效率。 展开更多
关键词 电动汽车动力总成悬置系统 任意多项式混沌展开 最大熵原理 数据驱动 不确定性
下载PDF
高比例新能源电力系统可靠性高效评估和薄弱环节辨识方法 被引量:1
17
作者 杨高峰 胡文 +3 位作者 方钦 汤林 邵常政 何豪杰 《电工电能新技术》 CSCD 北大核心 2024年第4期43-52,共10页
新能源渗透率的提高可能诱发供电中断的风险,使电力系统的运行可靠性降低,传统的中长期可靠性评估方法难以满足运行可靠性评估的时间需求。本文提出了一种电力系统运行可靠性高效评估算法,揭示了电力系统运行可靠性指标与风电出力不确... 新能源渗透率的提高可能诱发供电中断的风险,使电力系统的运行可靠性降低,传统的中长期可靠性评估方法难以满足运行可靠性评估的时间需求。本文提出了一种电力系统运行可靠性高效评估算法,揭示了电力系统运行可靠性指标与风电出力不确定性因素的解析函数关系,避免不确定性因素变化时可靠性的重复计算。首先,基于隐马尔可夫模型对风电出力的分布特性进行建模;然后,通过状态枚举-混沌多项式展开方法建立可靠性指标与风电出力间的解析函数;最后,基于解析函数实现对实时风电出力下的新能源电力系统运行可靠性的高效评估及薄弱环节辨识。以修改的IEEE-RTS79系统为例进行分析计算,验证了所提方法的有效性。 展开更多
关键词 新能源电力系统 隐马尔可夫模型 混沌多项式展开 可靠性评估 状态枚举 薄弱环节辨识
下载PDF
基于稀疏多项式混沌展开模型的钢筋混凝土结构长期挠度预测
18
作者 岳鑫鑫 张健 +3 位作者 马露 于敏 常山 但文蛟 《西华大学学报(自然科学版)》 CAS 2024年第3期84-90,共7页
钢筋混凝土受弯结构的长期挠度预测对于评价其全寿命周期的可服役性和安全性具有重要意义。文章传统的经验法难以考虑所有的影响因素,为了能够准确预测钢筋混凝土结构的长期挠度,本文使用稀疏多项式混沌展开(polynomial chaos expansion... 钢筋混凝土受弯结构的长期挠度预测对于评价其全寿命周期的可服役性和安全性具有重要意义。文章传统的经验法难以考虑所有的影响因素,为了能够准确预测钢筋混凝土结构的长期挠度,本文使用稀疏多项式混沌展开(polynomial chaos expansion,PCE)模型预测钢筋混凝土结构的长期挠度,并对影响结构挠度的参数进行全局灵敏度分析。使用实验数据集建立和评估稀疏PCE模型,与常见的代理模型(RBF、SVR和Kriging)和常见的机器学习模型(BP神经网络)进行比较,采用十折交叉验证算法对模型进行训练和检验。结果表明,稀疏PCE模型在预测钢筋混凝土结构长期挠度方面均优于常见的代理模型和机器学习模型,其相关系数R^(2)、相对平均绝对误差(RAAE)、相对最大绝对误差(RMAE)和均方根误差(RMSE)分别为0.970、0.108、0.537和0.062。稀疏PCE模型的RMSE值远远优于经验方法。最后,基于稀疏PCE的全局灵敏度分析结果对影响结构挠度的参数进行了重要性排序,其中,瞬时或即时测量的挠度a(i)、跨深比l/h、龄期t’混凝土强度fc’重要性程度较高,且依次递减。稀疏PCE模型可用于钢筋混凝土结构长期挠度预测,并且可量化评估影响钢筋混凝土结构长期适用性的关键因素。 展开更多
关键词 钢筋混凝土结构 挠度预测 多项式混沌展开 代理模型 机器学习 全局灵敏度分析
下载PDF
基于多项式混沌展开法的涡流无损检测高效元模型辅助探测概率的分析
19
作者 包扬 仇家豪 +3 位作者 陈炯锐 徐旻宣 殷晓康 宋继明 《无损检测》 CAS 2024年第5期69-74,共6页
探测概率对于量化涡流无损检测系统的检测能力非常重要。模型辅助探测概率的参数需要大量试验或仿真数据才可以确定,往往难以实现。应用基于退化核函数加速的边界元法的数值模型,提出使用基于普通最小二乘法的多项式混沌展开算法的元模... 探测概率对于量化涡流无损检测系统的检测能力非常重要。模型辅助探测概率的参数需要大量试验或仿真数据才可以确定,往往难以实现。应用基于退化核函数加速的边界元法的数值模型,提出使用基于普通最小二乘法的多项式混沌展开算法的元模型提升三维涡流无损检测问题探测概率的效率。通过有限截面线圈检测金属板面槽的算例,引入线圈位置和提离距离为不确定传播的参数,测试结果表明,该元模型预测的模型参数与基于退化核函数加速的边界元法物理模型计算的模型参数相对误差在1%以内,极大降低了所需的计算开销。 展开更多
关键词 边界元法 元模型 多项式混沌展开 涡流无损检测 模型辅助探测概率
下载PDF
A Non-Intrusive Stochastic Phase-Field for Fatigue Fracture in Brittle Materials with Uncertainty in Geometry and Material Properties
20
作者 Rajan Aravind Sundararajan Natarajan +1 位作者 Krishnankutty Jayakumar Ratna Kumar Annabattula 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期997-1032,共36页
Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications.This is... Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications.This is all the more important when elements composed of brittle materials are exposed to dynamic environments,resulting in catastrophic fatigue failures.The authors propose the application of a non-intrusive polynomial chaos expansion method for probabilistic studies on brittle materials undergoing fatigue fracture when geometrical parameters and material properties are random independent variables.Understanding the probabilistic nature of fatigue fracture in brittle materials is crucial for ensuring the reliability and safety of engineering structures subjected to cyclic loading.Crack growth is modelled using a phase-field approach within a finite element framework.For modelling fatigue,fracture resistance is progressively degraded by modifying the regularised free energy functional using a fatigue degradation function.Number of cycles to failure is treated as the dependent variable of interest and is estimated within acceptable limits due to the randomness in independent properties.Multiple 2D benchmark problems are solved to demonstrate the ability of this approach to predict the dependent variable responses with significantly fewer simulations than the Monte Carlo method.This proposed approach can accurately predict results typically obtained through 105 or more runs in Monte Carlo simulations with a reduction of up to three orders of magnitude in required runs.The independent random variables’sensitivity to the system response is determined using Sobol’indices.The proposed approach has low computational overhead and can be useful for computationally intensive problems requiring rapid decision-making in sensitive applications like aerospace,nuclear and biomedical engineering.The technique does not require reformulating existing finite element code and can perform the stochastic study by direct pre/post-processing. 展开更多
关键词 PHASE-FIELD fatigue fracture polynomial chaos expansion material uncertainty random variables non-intrusive stochastic technique
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部