期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical simulation of chemical vapor deposition reaction in polysilicon reduction furnace 被引量:1
1
作者 夏小霞 王志奇 刘斌 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期44-51,共8页
Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate ... Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate the flow, heat transfer and chemical reaction process in reduction furnace and to analyze the change law of deposition characteristic along with the H_2 mole fraction, silicon rod height and silicon rod diameter. The results show that with the increase of H_2 mole fraction, silicon growth rate increases firstly and then decreases. On the contrary, SiHCl_3 conversion rate and unit energy consumption decrease firstly and then increase. Silicon production rate increases constantly. The optimal H_2 mole fraction is 0.8-0.85. With the growth of silicon rod height, Si HCl3 conversion rate, silicon production rate and silicon growth rate increase, while unit energy consumption decreases. In terms of chemical reaction, the higher the silicon rod is, the better the performance is. In the view of the top-heavy situation, the actual silicon rod height is limited to be below 3 m. With the increase of silicon rod diameter, silicon growth rate decreases firstly and then increases. Besides, SiHCl_3 conversion rate and silicon production rate increase, while unit energy consumption first decreases sharply, then becomes steady. In practice, the bigger silicon rod diameter is more suitable. The optimal silicon rod diameter must be over 120 mm. 展开更多
关键词 polysilicon reduction furnace chemical vapor deposition silicon growth rate
下载PDF
Numerical Simulation of Heat Transfer Process and Heat Loss Analysis in Siemens CVD Reduction Furnaces
2
作者 Kunrong Shen Wanchun Jin Jin Wang 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1361-1379,共19页
The modified Siemens method is the dominant process for the production of polysilicon,yet it is characterised by high energy consumption.Two models of laboratory-grade Siemens reduction furnace and 12 pairs of rods in... The modified Siemens method is the dominant process for the production of polysilicon,yet it is characterised by high energy consumption.Two models of laboratory-grade Siemens reduction furnace and 12 pairs of rods industrial-grade Siemens chemical vapor deposition(CVD)reduction furnace were established,and the effects of factors such as the diameter of silicon rods,the surface temperature of silicon rods,the air inlet velocity and temperature on the heat transfer process inside the reduction furnace were investigated by numerical simulation.The results show that the convective and radiant heat losses in the furnace increased with the diameter of the silicon rods.Furthermore,the radiant heat loss of the inner and outer rings of silicon rods was inconsistent for the industrial-grade reduction furnace.As the surface temperature of the silicon rods increases,the convective heat loss in the furnace increases,while the radiative heat loss remains relatively constant.When the inlet temperature and inlet velocity increase,the convective heat loss decreases,while the radiant heat loss remains relatively constant.Furthermore,the furnace wall surface emissivity increases,resulting in a significant increase in the amount of radiant heat loss in the furnace.In practice,this can be mitigated by polishing or adding coatings to reduce the furnace wall surface emissivity. 展开更多
关键词 Modified siemens method polysilicon reduction furnace energy consumption numerical simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部