Unconsolidated sandstone reservoirs are most susceptible to sand production that leads to a dramatic oil production decline.In this study,the poly(4-vinyl pyridine)(P_(4)VP)incorporated with self-aggregating behavior ...Unconsolidated sandstone reservoirs are most susceptible to sand production that leads to a dramatic oil production decline.In this study,the poly(4-vinyl pyridine)(P_(4)VP)incorporated with self-aggregating behavior was proposed for sand migration control.The P_(4)VP could aggregate sand grains spontaneously throughπ-πstacking interactions to withstand the drag forces sufficiently.The influential factors on the self-aggregating behavior of the P_(4)VP were evaluated by adhesion force test.The adsorption as well as desorption behavior of P_(4)VP on sand grains was characterized by scanning electron microscopy and adhesion force test at different pH conditions.The result indicated that the pH altered the forms of surface silanol groups on sand grains,which in turn affected the adsorption process of P_(4)VP.The spontaneous dimerization of P_(4)VP molecules resulting from theπ-πstacking interaction was demonstrated by reduced density gradient analysis,which contributed to the self-aggregating behavior and the thermally reversible characteristic of the P_(4)VP.Dynamic sand stabilization test revealed that the P_(4)VP showed wide pH and temperature ranges of application.The production of sands can be mitigated effectively at 20-130℃ within the pH range of 4-8.展开更多
Multilayers of glucose oxidase(GOD)/N-ethyl-poly (4-vinyl) pyridine (EPVP) have been assembled on thiol self-assembled monolayers on gold electrode.This electrode can be used as an amperometric enzyme elcctrode for gl...Multilayers of glucose oxidase(GOD)/N-ethyl-poly (4-vinyl) pyridine (EPVP) have been assembled on thiol self-assembled monolayers on gold electrode.This electrode can be used as an amperometric enzyme elcctrode for glucose. Fe (CN)63-/4- incorporated in EPVP layer acts as the electron mediator, the linear range was 0.1 to 6 mmol/L when the number of GOD layers was 5.展开更多
Poly(4-vinyl pyridine) supported nanoparticle of copper(Ⅰ) iodide is reported as a green and recyclable catalyst for the regioselective synthesis of 1,4-disubstituted-1H-1,2,3-triazoles from benzyl halides,sodium...Poly(4-vinyl pyridine) supported nanoparticle of copper(Ⅰ) iodide is reported as a green and recyclable catalyst for the regioselective synthesis of 1,4-disubstituted-1H-1,2,3-triazoles from benzyl halides,sodium azide and terminal alkynes in water. This catalyst can be recovered by simple filtration and recycled up to 8 consecutive runs without any loss of its efficiency.展开更多
The graft copolymerization of 4-vinyl pyridine (4VP) onto nylon-6 (PA6) was studied by using potassium diperiodatonickelate(IV) (DPN)-PA6 redox system in alkaline medium. The structures of graft copolymers wer...The graft copolymerization of 4-vinyl pyridine (4VP) onto nylon-6 (PA6) was studied by using potassium diperiodatonickelate(IV) (DPN)-PA6 redox system in alkaline medium. The structures of graft copolymers were confirmed by Fourier transfer infrared spectroscopy (FTIR) and X-ray diffraction. The properties of graft copolymers were investigated by thermogravimetric analysis (TGA). A mechanism was proposed to explain the generation of radicals and the initiation. The effects of reaction variables, such as the initiator concentration, the ratio of 4VP to PA6, pH as well as reaction temperature and time were investigated. Graft copolymers with high grafting efficiency (〉95%) were obtained, which indicated that DPN-PA6 redox system is an efficient initiator for this graft copolymerization. The quaternized PA6-g-P4VP (QPAVP) was proved to be an excellent adsorbent to heavy metal ions.展开更多
Oxidation of aliphatic and aromatic halides by N-oxide functionalities supported on 4- vinyl pyridine, (4-VP), grafted cellulose is reported in the present manuscript. Synthesis of graft copolymer of cellulose and pol...Oxidation of aliphatic and aromatic halides by N-oxide functionalities supported on 4- vinyl pyridine, (4-VP), grafted cellulose is reported in the present manuscript. Synthesis of graft copolymer of cellulose and poly 4-vinyl pyridine, poly(4-VP), has been carried out using ceric ions as redox initiator. Post-grafting treatment of CellO-g-poly (4-VP) with 30% H2O2 in acetic acid gives Cellulose-g-poly (4-VP) N-oxide, the polymeric supported oxidizing reagent. The polymeric support, CellO-g-poly (4-VP) N-oxide, has been used for oxidation reactions of different alkyl / aryl halide such as 1-bromo-3-methyl butane, 2-bromo propane,1-bromo heptane and benzyl chloride. The polymeric reagent was characterized by IR and thermo-gravimetric analysis. The oxidized products were characterized by FTIR and H1NMR spectral methods. The reagent was reused for the oxidation of a fresh alkyl / aryl halides and it was observed that the polymeric reagent oxidizes the compounds successfully but with little lower product yield.展开更多
基金support from the National Key R&D Program of China(grant number 2018YFA0702400)the Major Scientific and Technological Projects of CNPC(grant number ZD2019-183-007)the China Postdoctoral Science Foundation(grant number 2021M702041)。
文摘Unconsolidated sandstone reservoirs are most susceptible to sand production that leads to a dramatic oil production decline.In this study,the poly(4-vinyl pyridine)(P_(4)VP)incorporated with self-aggregating behavior was proposed for sand migration control.The P_(4)VP could aggregate sand grains spontaneously throughπ-πstacking interactions to withstand the drag forces sufficiently.The influential factors on the self-aggregating behavior of the P_(4)VP were evaluated by adhesion force test.The adsorption as well as desorption behavior of P_(4)VP on sand grains was characterized by scanning electron microscopy and adhesion force test at different pH conditions.The result indicated that the pH altered the forms of surface silanol groups on sand grains,which in turn affected the adsorption process of P_(4)VP.The spontaneous dimerization of P_(4)VP molecules resulting from theπ-πstacking interaction was demonstrated by reduced density gradient analysis,which contributed to the self-aggregating behavior and the thermally reversible characteristic of the P_(4)VP.Dynamic sand stabilization test revealed that the P_(4)VP showed wide pH and temperature ranges of application.The production of sands can be mitigated effectively at 20-130℃ within the pH range of 4-8.
文摘Multilayers of glucose oxidase(GOD)/N-ethyl-poly (4-vinyl) pyridine (EPVP) have been assembled on thiol self-assembled monolayers on gold electrode.This electrode can be used as an amperometric enzyme elcctrode for glucose. Fe (CN)63-/4- incorporated in EPVP layer acts as the electron mediator, the linear range was 0.1 to 6 mmol/L when the number of GOD layers was 5.
文摘Poly(4-vinyl pyridine) supported nanoparticle of copper(Ⅰ) iodide is reported as a green and recyclable catalyst for the regioselective synthesis of 1,4-disubstituted-1H-1,2,3-triazoles from benzyl halides,sodium azide and terminal alkynes in water. This catalyst can be recovered by simple filtration and recycled up to 8 consecutive runs without any loss of its efficiency.
文摘The graft copolymerization of 4-vinyl pyridine (4VP) onto nylon-6 (PA6) was studied by using potassium diperiodatonickelate(IV) (DPN)-PA6 redox system in alkaline medium. The structures of graft copolymers were confirmed by Fourier transfer infrared spectroscopy (FTIR) and X-ray diffraction. The properties of graft copolymers were investigated by thermogravimetric analysis (TGA). A mechanism was proposed to explain the generation of radicals and the initiation. The effects of reaction variables, such as the initiator concentration, the ratio of 4VP to PA6, pH as well as reaction temperature and time were investigated. Graft copolymers with high grafting efficiency (〉95%) were obtained, which indicated that DPN-PA6 redox system is an efficient initiator for this graft copolymerization. The quaternized PA6-g-P4VP (QPAVP) was proved to be an excellent adsorbent to heavy metal ions.
文摘Oxidation of aliphatic and aromatic halides by N-oxide functionalities supported on 4- vinyl pyridine, (4-VP), grafted cellulose is reported in the present manuscript. Synthesis of graft copolymer of cellulose and poly 4-vinyl pyridine, poly(4-VP), has been carried out using ceric ions as redox initiator. Post-grafting treatment of CellO-g-poly (4-VP) with 30% H2O2 in acetic acid gives Cellulose-g-poly (4-VP) N-oxide, the polymeric supported oxidizing reagent. The polymeric support, CellO-g-poly (4-VP) N-oxide, has been used for oxidation reactions of different alkyl / aryl halide such as 1-bromo-3-methyl butane, 2-bromo propane,1-bromo heptane and benzyl chloride. The polymeric reagent was characterized by IR and thermo-gravimetric analysis. The oxidized products were characterized by FTIR and H1NMR spectral methods. The reagent was reused for the oxidation of a fresh alkyl / aryl halides and it was observed that the polymeric reagent oxidizes the compounds successfully but with little lower product yield.