期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Low temperature molten salt synthesis of porous La_(1-x)Sr_xMn_(0.8)Fe_(0.2)O_3(0≤x≤0.6) microspheres with high catalytic activity for CO oxidation 被引量:4
1
作者 黄学辉 牛鹏举 商晓辉 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1431-1439,共9页
A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patt... A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patterns showed that single phase LaMn0.8Fe0.2O3 with good crystallinity was syn‐thesized at 450℃ after 4 h. Transmission electron microscope images exhibited that the LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h possessed a porous spherical morphology com‐posed of aggregated nanocrystallites. Field emission scanning electron microscope images indicated that the growth of the porous LaMn0.8Fe0.2O3 microspheres has two stages. SEM pictures showed that a higher calcination temperature than 450?? had an adverse effect on the formation of a po‐rous spherical structure. The LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h displayed a high BET surface area of 55.73 m2/g with a pore size of 9.38 nm. Fourier transform infrared spectra suggested that Sr2+ions entered the A sites and induced a decrease of the binding energy between Mn and O. The CO conversion with the La1‐xSrxMn0.8Fe0.2O3 (0≤x≤0.6) samples indicated that the La0.4Sr0.6Mn0.8Fe0.2O3 sample had the best catalytic activity and stability. Further analysis by X‐ray photoelectron spectroscopy demonstrated that Sr2+doping altered the content of Mn4+ions, oxygen vacancies and adsorbed oxygen species on the surface, which affected the catalytic performance for CO oxidation. 展开更多
关键词 Molten salt method δ-MnO2 microsphere porous spherical structure Calcination temperature Carbon monoxide oxidation
下载PDF
Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials 被引量:8
2
作者 Ting-Feng Yi Li-Ying Qiu +6 位作者 Jie Mei Si-Yu Qi Ping Cui Shaohua Luo Yan-Rong Zhu Ying Xie Yan-Bing He 《Science Bulletin》 SCIE EI CAS CSCD 2020年第7期546-556,M0004,共12页
In this work, a rational design and construction of porous spherical Ni O@NiMoO4 wrapped with PPy was reported for the application of high-performance supercapacitor(SC). The results show that the NiMoO4 modification ... In this work, a rational design and construction of porous spherical Ni O@NiMoO4 wrapped with PPy was reported for the application of high-performance supercapacitor(SC). The results show that the NiMoO4 modification changes the morphology of Ni O, and the hollow internal morphology combined with porous outer shell of Ni O@NiMoO4 and Ni O@NiMoO4@PPy hybrids shows an increased specific surface area(SSA), and then promotes the transfer of ions and electrons. The shell of NiMoO4 and PPy with high electronic conductivity decreases the charge-transfer reaction resistance of Ni O, and then improves the electrochemical kinetics of Ni O. At 20 Ag^-1, the initial capacitances of Ni O, NiMoO4, Ni O@NiMoO4 and Ni O@NiMoO4@PPy are 456.0, 803.2, 764.4 and 941.6 Fg^-1, respectively. After 10,000 cycles, the corresponding capacitances are 346.8, 510.8, 641.2 and 904.8 Fg^-1, respectively. Especially, the initial capacitance of Ni O@NiMoO4@PPy is 850.2 Fg^-1, and remains 655.2 Fg^-1 with a high retention of 77.1% at30 Ag^-1 even after 30,000 cycles. The calculation result based on density function theory shows that the much stronger Mo-O bonds are crucial for stabilizing the Ni O@NiMoO4 composite, resulting in a good cycling stability of these materials. 展开更多
关键词 NIO NiO@NiMoO4@PPy porous spherical structure Supercapacitor Cycling stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部