A novel two-dimensional (2D) simulation method of positive corona current pulses is proposed. A control-volume- based finite element method (CV-FEM) is used to solve continuity equations, and the Galerkin finite e...A novel two-dimensional (2D) simulation method of positive corona current pulses is proposed. A control-volume- based finite element method (CV-FEM) is used to solve continuity equations, and the Galerkin finite element method (FEM) is used to solve Poisson's equation. In the proposed method, photoionization is considered by adopting an exact Helmholtz photoionization model. Furthermore, fully implicit discretization and variable time step are used to ensure the time-efficiency of the present method. Finally, the method is applied to a positive rod-plane corona problem. The numerical results are in agreement with the experimental results, and the validity of the proposed method is verified.展开更多
The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investig...The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investigated in order to reveal their generation mechanism.In this paper,the line-to-plane electrodes are designed to measure and analyze the characteristics of corona current pulses from positive corona discharges.The influences of inter-electrode gap and line diameters on the detail characteristics of corona current pulses,such as pulse amplitude,rise time,duration time and repetition frequency,are carefully analyzed.The obtained results show that the pulse amplitude and the repetition frequency increase with the diameter of line electrode when the electric fields on the surface of line electrodes are same.With the increase of inter-electrode gap,the pulse amplitude and the repetition frequency first decrease and then turn to be stable,while the rise time first increases and finally turns to be stable.The distributions of electric field and space charges under the line electrodes are calculated,and the influences of inter-electrode gap and line electrode diameter on the experimental results are qualitatively explained.展开更多
Positive corona burst pulses are an unstable pulse mode.They appear in a small range of the onset stage,and their current pulses result from the collective movement of charged species.This paper focused on the connect...Positive corona burst pulses are an unstable pulse mode.They appear in a small range of the onset stage,and their current pulses result from the collective movement of charged species.This paper focused on the connections between these pulses and the collective movement of charged species.The movement of species is divided into four parts with respect to time:the(1)initial growth of species,(2)formation and development of the streamer region and negative ion sheath,(3)dead time(the time interval between the pulses),and(4)rapid re-growth of species.The movement of the species in the four parts and the correspondence with the current pulse were analyzed.The numerical results indicated the following:the rapid rising of the species matched the rising edge of the pulses,the streamer region,and negative ion sheath appeared in the falling edge of the primary pulse,and the rapid re-growth of species matched the re-ignition of the pulses.The results were in qualitative agreement with deductions and experimental observations in the literature.展开更多
The physical and chemical properties have significant differences for the positive and negative charged particles generated by discharge.In this work,a positive and negative corona discharge system was established,and...The physical and chemical properties have significant differences for the positive and negative charged particles generated by discharge.In this work,a positive and negative corona discharge system was established,and two discharge reactors for charged particles restraining and acting were designed by a needle electrode covered with a quartz tube and a plate electrode filled with water.The corona discharges happened within the needle-plate electrodes were excited by a positive and negative high voltage source,and the characteristics of both water volatilization and oxides generation were examined within influence of the distances of both quartz tube inside and outside.The results show that the characteristics of both the water volatilization and oxides generation can be affected by the distances of both quartz tube inside and outside.When the distances of tube inside were increased from 5.00 to 13.00 mm,the water volatilizations decreased under negative corona,and increased firstly and declined immediately under positive corona.The maximum value of the water volatilization appeared in the distances of tube inside with 6.00–8.00 mm.In addition,the concentrations of the HNO_(x) and H_(2)O_(2)in treated water decreased with increasing the distances of tube inside.Moreover,with increasing the distances of tube outside from 4.00 to 14.00 mm,the change trends of both the water volatilizations and oxides presented the same as the distances of tube inside,and the maximum value of the water volatilization and oxides appeared in the distance of tube outside with about 9.00 mm.Overall,the positive corona can generate more water volatilizations and oxides in water than negative corona,and non H_(2)O_(2)can be produced by negative corona.The results reflect the difference between positive and negative corona interaction with water,which can provide reference for plasma application.展开更多
The emission spectra of excited radicals(OH(A^2E),O(3p^3 P),Hα(3P)) and emissive species(N2^+(B^2∑u^+),N2(C3Πu)) produced by positive pulsed high-voltage needle-plane corona discharges in atmospheri...The emission spectra of excited radicals(OH(A^2E),O(3p^3 P),Hα(3P)) and emissive species(N2^+(B^2∑u^+),N2(C3Πu)) produced by positive pulsed high-voltage needle-plane corona discharges in atmospheric N2 and O2 flows wetted with 10%H2O at 80 ℃ are used to investigate the relative concentrations of the produced radicals.The results indicate that the tendencies of the concentrations of radicals with discharge conditions are similar to each other due to their similar excitation processes by electron collision.The influence of oxygen flow mixed with the nitrogen flow on the emission intensities of O(3p^5P → 3s^5S2^0.),Hα(3P → 2S),N2+(B^2∑u^+ → X^2∑g+0-0),and N2(C^3Πu → B^3Πg 1-0) is presented.When the flow rate of oxygen addition is varied from 0-30 ml min^-1,the emission intensities of O(3p^5P → 3s^5S2^0.),Hα(3P → 2s),and N2^+(B^2∑u^+ →X^2∑g 0-0) increase and reach a maximum.Then,if the oxygen flow rate increases further,the emission intensities tend to decrease.However,the intensity of N2(C^3Πu → B^3Πg1-0) decreases monotonously with the increasing oxygen flow,which indicates that the electron density decreases with the increasing oxygen flow.By the tendencies of the relative intensities to N2(C^3Πu → B^3Πg 1-0),the concentrations of the total produced O,H,and N2^+ are shown to increase with the oxygen flow.Based on the reactions for the production of H and O without and with the addition of O2,the analytic solutions for H and O production are derived in accordance with the experimental results.展开更多
This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface Of the wastew...This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface Of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly.展开更多
The paper presents research data on positive and negative coronas inatmospheric pressure air in a highly inhomogeneous electric field. Thedata show that irrespective of the polarity of pointed electrodes placed ina hi...The paper presents research data on positive and negative coronas inatmospheric pressure air in a highly inhomogeneous electric field. Thedata show that irrespective of the polarity of pointed electrodes placed ina high electric field (200 kV/cm), this type of discharge develops via ballstreamers even if the gap voltage rises slowly (0.2 kV/ms). The start voltageof first positive streamers, compared to negative ones, is higher andthe amplitude and the frequency of their current pulses are much lower:about two times and more than two orders of magnitude, respectively.The higher frequency of current pulses from negative streamers provideshigher average currents and larger luminous areas of negative coronascompared to positive ones. Positive and negative cylindrical streamersfrom a pointed to a plane electrode are detected and successive dischargetransitions at both polarities are identified.展开更多
In the development of hybrid HVDC and HVAC transmission lines,the study of radio interference is an important issue.Positive corona current pulses from high voltage transmission lines are the main source of radio inte...In the development of hybrid HVDC and HVAC transmission lines,the study of radio interference is an important issue.Positive corona current pulses from high voltage transmission lines are the main source of radio interference.In this paper,the design of a wire-cylinder gap electrode system is presented to study the influence of AC voltage on the characteristics of positive corona current pulses.The study shows that the mode of the current pulses is different from that of either DC or AC corona discharge.Waveform parameters of the pulses,such as rise time,half wave time,duration time,repetition rates,average amplitude,and time intervals of secondary pulses are all statistically analyzed in this study.The empirical formulas for the repetition rates with different AC voltages are presented.A theoretical explanation based on an ion cloud model is given to reveal the mechanism behind the influence of AC voltage on positive corona discharge.The experimental results could provide some references for the prediction of radio interference from hybrid AC/DC transmission lines.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2011CB209402)the National Natural Science Foundation of China(Grant No.51177041)the Fundamental Research Funds for the Central Universities,China(Grant No.12QX01)
文摘A novel two-dimensional (2D) simulation method of positive corona current pulses is proposed. A control-volume- based finite element method (CV-FEM) is used to solve continuity equations, and the Galerkin finite element method (FEM) is used to solve Poisson's equation. In the proposed method, photoionization is considered by adopting an exact Helmholtz photoionization model. Furthermore, fully implicit discretization and variable time step are used to ensure the time-efficiency of the present method. Finally, the method is applied to a positive rod-plane corona problem. The numerical results are in agreement with the experimental results, and the validity of the proposed method is verified.
基金supported by National Natural Science Foundation of China under Grant No.51707066by the Fundamental Research Funds for the Central Universities under Grant No.2017 MS004 and No.XCA17003-04
文摘The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investigated in order to reveal their generation mechanism.In this paper,the line-to-plane electrodes are designed to measure and analyze the characteristics of corona current pulses from positive corona discharges.The influences of inter-electrode gap and line diameters on the detail characteristics of corona current pulses,such as pulse amplitude,rise time,duration time and repetition frequency,are carefully analyzed.The obtained results show that the pulse amplitude and the repetition frequency increase with the diameter of line electrode when the electric fields on the surface of line electrodes are same.With the increase of inter-electrode gap,the pulse amplitude and the repetition frequency first decrease and then turn to be stable,while the rise time first increases and finally turns to be stable.The distributions of electric field and space charges under the line electrodes are calculated,and the influences of inter-electrode gap and line electrode diameter on the experimental results are qualitatively explained.
基金supported by National Natural Science Foundation of China(No.51907145)。
文摘Positive corona burst pulses are an unstable pulse mode.They appear in a small range of the onset stage,and their current pulses result from the collective movement of charged species.This paper focused on the connections between these pulses and the collective movement of charged species.The movement of species is divided into four parts with respect to time:the(1)initial growth of species,(2)formation and development of the streamer region and negative ion sheath,(3)dead time(the time interval between the pulses),and(4)rapid re-growth of species.The movement of the species in the four parts and the correspondence with the current pulse were analyzed.The numerical results indicated the following:the rapid rising of the species matched the rising edge of the pulses,the streamer region,and negative ion sheath appeared in the falling edge of the primary pulse,and the rapid re-growth of species matched the re-ignition of the pulses.The results were in qualitative agreement with deductions and experimental observations in the literature.
基金partially supported by Natural Science Foundation of the Jiangsu Province(No.BK20191162)Fundamental Research Funds for the Central Universities(No.B210203006)+1 种基金National Natural Science Foundation of China(No.11874140)Changzhou Science and Technology Program(No.CJ20190046)。
文摘The physical and chemical properties have significant differences for the positive and negative charged particles generated by discharge.In this work,a positive and negative corona discharge system was established,and two discharge reactors for charged particles restraining and acting were designed by a needle electrode covered with a quartz tube and a plate electrode filled with water.The corona discharges happened within the needle-plate electrodes were excited by a positive and negative high voltage source,and the characteristics of both water volatilization and oxides generation were examined within influence of the distances of both quartz tube inside and outside.The results show that the characteristics of both the water volatilization and oxides generation can be affected by the distances of both quartz tube inside and outside.When the distances of tube inside were increased from 5.00 to 13.00 mm,the water volatilizations decreased under negative corona,and increased firstly and declined immediately under positive corona.The maximum value of the water volatilization appeared in the distances of tube inside with 6.00–8.00 mm.In addition,the concentrations of the HNO_(x) and H_(2)O_(2)in treated water decreased with increasing the distances of tube inside.Moreover,with increasing the distances of tube outside from 4.00 to 14.00 mm,the change trends of both the water volatilizations and oxides presented the same as the distances of tube inside,and the maximum value of the water volatilization and oxides appeared in the distance of tube outside with about 9.00 mm.Overall,the positive corona can generate more water volatilizations and oxides in water than negative corona,and non H_(2)O_(2)can be produced by negative corona.The results reflect the difference between positive and negative corona interaction with water,which can provide reference for plasma application.
基金supported by National Natural Science Foundation of China under Grant No.513377014
文摘The emission spectra of excited radicals(OH(A^2E),O(3p^3 P),Hα(3P)) and emissive species(N2^+(B^2∑u^+),N2(C3Πu)) produced by positive pulsed high-voltage needle-plane corona discharges in atmospheric N2 and O2 flows wetted with 10%H2O at 80 ℃ are used to investigate the relative concentrations of the produced radicals.The results indicate that the tendencies of the concentrations of radicals with discharge conditions are similar to each other due to their similar excitation processes by electron collision.The influence of oxygen flow mixed with the nitrogen flow on the emission intensities of O(3p^5P → 3s^5S2^0.),Hα(3P → 2S),N2+(B^2∑u^+ → X^2∑g+0-0),and N2(C^3Πu → B^3Πg 1-0) is presented.When the flow rate of oxygen addition is varied from 0-30 ml min^-1,the emission intensities of O(3p^5P → 3s^5S2^0.),Hα(3P → 2s),and N2^+(B^2∑u^+ →X^2∑g 0-0) increase and reach a maximum.Then,if the oxygen flow rate increases further,the emission intensities tend to decrease.However,the intensity of N2(C^3Πu → B^3Πg1-0) decreases monotonously with the increasing oxygen flow,which indicates that the electron density decreases with the increasing oxygen flow.By the tendencies of the relative intensities to N2(C^3Πu → B^3Πg 1-0),the concentrations of the total produced O,H,and N2^+ are shown to increase with the oxygen flow.Based on the reactions for the production of H and O without and with the addition of O2,the analytic solutions for H and O production are derived in accordance with the experimental results.
文摘This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface Of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly.
文摘The paper presents research data on positive and negative coronas inatmospheric pressure air in a highly inhomogeneous electric field. Thedata show that irrespective of the polarity of pointed electrodes placed ina high electric field (200 kV/cm), this type of discharge develops via ballstreamers even if the gap voltage rises slowly (0.2 kV/ms). The start voltageof first positive streamers, compared to negative ones, is higher andthe amplitude and the frequency of their current pulses are much lower:about two times and more than two orders of magnitude, respectively.The higher frequency of current pulses from negative streamers provideshigher average currents and larger luminous areas of negative coronascompared to positive ones. Positive and negative cylindrical streamersfrom a pointed to a plane electrode are detected and successive dischargetransitions at both polarities are identified.
基金supported by National Basic Research Program of China(973 Program)under Grant 2011CB209402.
文摘In the development of hybrid HVDC and HVAC transmission lines,the study of radio interference is an important issue.Positive corona current pulses from high voltage transmission lines are the main source of radio interference.In this paper,the design of a wire-cylinder gap electrode system is presented to study the influence of AC voltage on the characteristics of positive corona current pulses.The study shows that the mode of the current pulses is different from that of either DC or AC corona discharge.Waveform parameters of the pulses,such as rise time,half wave time,duration time,repetition rates,average amplitude,and time intervals of secondary pulses are all statistically analyzed in this study.The empirical formulas for the repetition rates with different AC voltages are presented.A theoretical explanation based on an ion cloud model is given to reveal the mechanism behind the influence of AC voltage on positive corona discharge.The experimental results could provide some references for the prediction of radio interference from hybrid AC/DC transmission lines.