A new type of steel moment resisting frame with bottom flange friction devices (BFFDs) has been developed to provide self-centering capacity and energy dissipation, and to reduce permanent deformations under earthqu...A new type of steel moment resisting frame with bottom flange friction devices (BFFDs) has been developed to provide self-centering capacity and energy dissipation, and to reduce permanent deformations under earthquakes. This paper presents a numerical simulation of self-centering beam-column connections with BFFDs, in which the gap opening/closing at the beam-column interfaces is simulated by using pairs of zero-length elements with compression-only material properties, and the energy dissipation due to friction is simulated by using truss elements with specified hysteretic behavior. In particular, the effect of the friction bolt bearing against the slotted plate in the BFFDs was modeled, so that the increase in lateral force and the loss of friction force due to the bolt bearing could be taken into account. Parallel elastic-perfectly plastic gap (ElasticPPGap) materials in the Open System for Earthquake Engineering Simulation (OpenSees) were used with predefined gaps to specify the sequence that each bolt went into the bearing and the corresponding increase in bending stiffness. The MinMax material in OpenSees is used to specify the minimum and maximum values of strains of the ElasticPPGap materials. To consider the loss of friction force due to bok bearing, a number of parallel hysteretic materials were used, and the failure of these materials in sequence simulated the gradual loss of friction force. Analysis results obtained by using the proposed numerical model are discussed and compared with the test results under cyclic loadings and the seismic loading, respectively.展开更多
Due to outstanding ductility and high strength,the steel plate shear wall(SPSW)is recognized as a good lateral system for building structures; particularly as it interacts with earthquake resistant design.This study a...Due to outstanding ductility and high strength,the steel plate shear wall(SPSW)is recognized as a good lateral system for building structures; particularly as it interacts with earthquake resistant design.This study aims to reveal the dynamic and cyclic behavior of steel plated shear wall.Finite element method of analysis was implemented in order to simulate the behavior of such a wall structure.To determine the dynamic behavior of un-stiffened plate shear wall,two different analytical models were implemented.The post buckling strength of steel plate subjected to lateral loading was also employed.The story shear-drift diagrams of steel shear wall system were presented.The strength and ductility of the system obtained from the analysis were compared with those of steel shear wall tests reported before.The pertinent parameters of the steel shear wall system such as plate thickness,column and beam stiffness and the plate aspect ratio were recognized and their effects were recorded.The effect of stiffeners on the behavior of the SPSW was also investigated.展开更多
基金National Natural Science Foundation of China Under Grant No. 51078075a grant from Southeast University (No. 3205000502)the financial support from the State Key Lab of Subtropical Building Science, South China University of Technology under Grant No. 2010KB05
文摘A new type of steel moment resisting frame with bottom flange friction devices (BFFDs) has been developed to provide self-centering capacity and energy dissipation, and to reduce permanent deformations under earthquakes. This paper presents a numerical simulation of self-centering beam-column connections with BFFDs, in which the gap opening/closing at the beam-column interfaces is simulated by using pairs of zero-length elements with compression-only material properties, and the energy dissipation due to friction is simulated by using truss elements with specified hysteretic behavior. In particular, the effect of the friction bolt bearing against the slotted plate in the BFFDs was modeled, so that the increase in lateral force and the loss of friction force due to the bolt bearing could be taken into account. Parallel elastic-perfectly plastic gap (ElasticPPGap) materials in the Open System for Earthquake Engineering Simulation (OpenSees) were used with predefined gaps to specify the sequence that each bolt went into the bearing and the corresponding increase in bending stiffness. The MinMax material in OpenSees is used to specify the minimum and maximum values of strains of the ElasticPPGap materials. To consider the loss of friction force due to bok bearing, a number of parallel hysteretic materials were used, and the failure of these materials in sequence simulated the gradual loss of friction force. Analysis results obtained by using the proposed numerical model are discussed and compared with the test results under cyclic loadings and the seismic loading, respectively.
文摘Due to outstanding ductility and high strength,the steel plate shear wall(SPSW)is recognized as a good lateral system for building structures; particularly as it interacts with earthquake resistant design.This study aims to reveal the dynamic and cyclic behavior of steel plated shear wall.Finite element method of analysis was implemented in order to simulate the behavior of such a wall structure.To determine the dynamic behavior of un-stiffened plate shear wall,two different analytical models were implemented.The post buckling strength of steel plate subjected to lateral loading was also employed.The story shear-drift diagrams of steel shear wall system were presented.The strength and ductility of the system obtained from the analysis were compared with those of steel shear wall tests reported before.The pertinent parameters of the steel shear wall system such as plate thickness,column and beam stiffness and the plate aspect ratio were recognized and their effects were recorded.The effect of stiffeners on the behavior of the SPSW was also investigated.