Potassium-rich brine in the Sichuan Basin has been much studied in recent years, but few studies have focused on the distribution and migration of salt basin and the differences of potassium formation mechanisms. This...Potassium-rich brine in the Sichuan Basin has been much studied in recent years, but few studies have focused on the distribution and migration of salt basin and the differences of potassium formation mechanisms. This work examined the salt-gathering and potassium formation of potassiumrich brine during the Triassic in the Sichuan Basin using lithofacies palaeogeographic depiction and geochemical analyses.(1) The favorable sedimentary facies controlling the formation of potassium-rich brine during the Triassic in the Sichuan Basin are evaporation platform and restricted platform, whereas the salt basin is one of the main factors controlling the poly-salt center.(2) The distribution and migration of this salt basin were affected by certain factors. The salt basin of the Jialingjiang Formation was mainly distributed in the east and central Sichuan Basin, whereas that of the Leikoupo Formation was mainly distributed in the central and west Sichuan Basin. The sedimentary centers have gradually moved westward and become smaller.(3) Three main formation mechanisms were identified for the potassium-rich brine during the Triassic in the Sichuan Basin, i.e., evaporation and concentration of seawater, surface fresh water leaching, and deep water-rock reaction. Fresh water leaching was characterized by low anomaly δ18 O and δ13 C values. Water-rock reaction was mainly related to temperature, and high temperature environment(caused by burial depth, overthrust and deep hydrothermal fluids) was beneficial to water-rock reaction. The characteristics of water-rock reaction do not correspond to the increase ratio of K·103/Cl and Br·103/Cl in brine, and the Rb+ content of the brine was high.(4) The formation mechanisms of potassium-rich brine differed between different areas of the Sichuan Basin. In east Sichuan, the evaporation and concentration of seawater, together with meteoric fresh water leaching, was the main formation factor, whereas the evaporation and concentration of seawater and water–rock reaction predominated in west Sichuan. This study of the sedimentary environment and formation mechanisms is of significance to the exploration and exploitation of potassium-rich brine in the Sichuan Basin.展开更多
Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures ...Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures and temperatures fuels a debate over the origin of these rocks.In this work,we performed partial melting experiments at 1.5 GPa and 800–950℃on amphibolite samples collected from the vicinity of the Mesozoic potassium-rich adakitic rocks in the Zhangjiakou area,northern margin of the North China Craton.The experimental melts range from granitic to granodioritic compositions,with SiO_(2)=56.4–72.6 wt.%,Al_(2)O_(3)=16.1–19.3 wt.%,FeO^(*)=2.4–9.6 wt.%,MgO=0.3–2.0 wt.%,CaO=0.6–3.8 wt.%,Na_(2)O=4.7–5.3 wt.%,and K_(2)O=2.6–3.9 wt.%,which are in the ranges of the surrounding Mesozoic potassium-rich adakitic rocks,except for the higher Al_(2)O_(3)contents and the data point at 1.5 GPa and 800℃.Trace element compositions of the melts measured by LA-ICP-MS are rich in Sr(849–1067 ppm)and light rare earth elements(LREEs)and poor in Y(<10.4 ppm)and Yb(<0.88 ppm),and have high Sr/Y(102–221)and(La/Yb)n(27–41)ratios and strongly fractionated rare earth element(REE)patterns,whereas no obvious negative Eu anomalies are observed.The geochemical characteristics show overall similarity to the Mesozoic potassium-rich adakitic rocks in the area,especially adakites with low Mg#,again except for the data point at 1.5 GPa and 800℃.The results suggest that partial melting of amphibolite can produce potassium-rich adakitic rocks with low Mg#in the eastern North China Craton under the experimental conditions of 1.5 GPa and 850–950℃.The experimental restites consist of hornblende(Hbl)+plagioclase(Pl)+garnet(Grt)±clinopyroxene(Cpx),a mineral assemblage significantly different from that of the nearby Hannuoba mafic granulite xenoliths which consist of Cpx+orthopyroxene(Opx)+Pl±Grt.Chemically,the experimental restites contain higher Al_(2)O_(3)but lower MgO and CaO than the Hannuoba mafic granulite xenoliths.We therefore argue that the Hannuoba mafic granulite xenoliths cannot represent the direct products of partial melting of the experimental amphibolite.展开更多
基金supported by the Project of Survey and Evaluation of Potash Minerals in the Western Region (grant No. DD20160054)the National Natural Science Foundation (grant No. 91755215)
文摘Potassium-rich brine in the Sichuan Basin has been much studied in recent years, but few studies have focused on the distribution and migration of salt basin and the differences of potassium formation mechanisms. This work examined the salt-gathering and potassium formation of potassiumrich brine during the Triassic in the Sichuan Basin using lithofacies palaeogeographic depiction and geochemical analyses.(1) The favorable sedimentary facies controlling the formation of potassium-rich brine during the Triassic in the Sichuan Basin are evaporation platform and restricted platform, whereas the salt basin is one of the main factors controlling the poly-salt center.(2) The distribution and migration of this salt basin were affected by certain factors. The salt basin of the Jialingjiang Formation was mainly distributed in the east and central Sichuan Basin, whereas that of the Leikoupo Formation was mainly distributed in the central and west Sichuan Basin. The sedimentary centers have gradually moved westward and become smaller.(3) Three main formation mechanisms were identified for the potassium-rich brine during the Triassic in the Sichuan Basin, i.e., evaporation and concentration of seawater, surface fresh water leaching, and deep water-rock reaction. Fresh water leaching was characterized by low anomaly δ18 O and δ13 C values. Water-rock reaction was mainly related to temperature, and high temperature environment(caused by burial depth, overthrust and deep hydrothermal fluids) was beneficial to water-rock reaction. The characteristics of water-rock reaction do not correspond to the increase ratio of K·103/Cl and Br·103/Cl in brine, and the Rb+ content of the brine was high.(4) The formation mechanisms of potassium-rich brine differed between different areas of the Sichuan Basin. In east Sichuan, the evaporation and concentration of seawater, together with meteoric fresh water leaching, was the main formation factor, whereas the evaporation and concentration of seawater and water–rock reaction predominated in west Sichuan. This study of the sedimentary environment and formation mechanisms is of significance to the exploration and exploitation of potassium-rich brine in the Sichuan Basin.
基金the National Natural Science Foundation of China(Grant Nos.41772043 and 41802043)the Chinese Academy of Sciences“Light of West China”Program(Dawei Fan,2017 and Jingui Xu,2019)+1 种基金the Youth Innovation Promotion Association CAS(Dawei Fan,2018434)the Innovation and Entrepreneurship Funding of High-Level Overseas Talents of Guizhou Province(Dawei Fan,[2019]10).
文摘Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures and temperatures fuels a debate over the origin of these rocks.In this work,we performed partial melting experiments at 1.5 GPa and 800–950℃on amphibolite samples collected from the vicinity of the Mesozoic potassium-rich adakitic rocks in the Zhangjiakou area,northern margin of the North China Craton.The experimental melts range from granitic to granodioritic compositions,with SiO_(2)=56.4–72.6 wt.%,Al_(2)O_(3)=16.1–19.3 wt.%,FeO^(*)=2.4–9.6 wt.%,MgO=0.3–2.0 wt.%,CaO=0.6–3.8 wt.%,Na_(2)O=4.7–5.3 wt.%,and K_(2)O=2.6–3.9 wt.%,which are in the ranges of the surrounding Mesozoic potassium-rich adakitic rocks,except for the higher Al_(2)O_(3)contents and the data point at 1.5 GPa and 800℃.Trace element compositions of the melts measured by LA-ICP-MS are rich in Sr(849–1067 ppm)and light rare earth elements(LREEs)and poor in Y(<10.4 ppm)and Yb(<0.88 ppm),and have high Sr/Y(102–221)and(La/Yb)n(27–41)ratios and strongly fractionated rare earth element(REE)patterns,whereas no obvious negative Eu anomalies are observed.The geochemical characteristics show overall similarity to the Mesozoic potassium-rich adakitic rocks in the area,especially adakites with low Mg#,again except for the data point at 1.5 GPa and 800℃.The results suggest that partial melting of amphibolite can produce potassium-rich adakitic rocks with low Mg#in the eastern North China Craton under the experimental conditions of 1.5 GPa and 850–950℃.The experimental restites consist of hornblende(Hbl)+plagioclase(Pl)+garnet(Grt)±clinopyroxene(Cpx),a mineral assemblage significantly different from that of the nearby Hannuoba mafic granulite xenoliths which consist of Cpx+orthopyroxene(Opx)+Pl±Grt.Chemically,the experimental restites contain higher Al_(2)O_(3)but lower MgO and CaO than the Hannuoba mafic granulite xenoliths.We therefore argue that the Hannuoba mafic granulite xenoliths cannot represent the direct products of partial melting of the experimental amphibolite.