期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Powder mixed electrochemical discharge process for micro machining of C103 niobium alloy
1
作者 Niladri Mandal Nitesh Kumar Alok Kumar Das 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期84-101,共18页
This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes... This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes are involved simultaneously i.e.spark erosion,chemical etching,and abrasive grinding for removal of material while the classical electrochemical discharge machining process involves double actions i.e.spark erosion,and chemical etching.The powder-mixed electrolyte process resulted in rapid material removal along with a better surface finish as compared to the classical microelectrochemical discharge machining(MECDM).Further,the results are optimized through a multiobjective optimization approach and study of the surface topography of the hole wall surface obtained at optimized parameters.In the selected range of experimental parameters,PMECDM shows a higher material removal rate(MRR) and lower surface roughness(R_(a))(MRR:2.8 mg/min and R_(a) of 0.61 μm) as compared to the MECDM process(MRR:2.01 mg/min and corresponding Raof 1.11 μm).A detailed analysis of the results is presented in this paper. 展开更多
关键词 Micro-electrochemical discharge machining C103 niobium alloy Surface integrity Material removal rate Hybrid powder mixed ECDM
下载PDF
Application Research on Powder Mixed EDM in Rough Machining 被引量:1
2
作者 ZHAO Wan-sheng, MENG Qing-guo, WANG Zhen-long (Dept. of Mechanical Engineering, Harbin Institute of Technology, Harbin 150001, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期6-7,共2页
Powder Mixed Electric Discharge Machining (PMEDM) has different mechanism from conventional EDM, which can improve the surface roughness and surface quality distinctly and to obtain nearly mirror surface effects. It i... Powder Mixed Electric Discharge Machining (PMEDM) has different mechanism from conventional EDM, which can improve the surface roughness and surface quality distinctly and to obtain nearly mirror surface effects. It is a useful finish machining method and is researched and applied by many countries. However there are little research on rough machining of PMEDM. Experiments show that PMEDM machining makes discharge breakdown easier, enlarges the discharge gaps and widens discharge passage, and at last forms even distributed and "large and shadow" shaped etched cavities. Because of much loss of discharge energy in the discharge gaps and reduction of ejecting force on the melted material, the machining efficiency gets lower and the surface roughness gets small in PMEDM machining in comparison with conventional EDM machining. This paper performs experimental research on the machining efficiency and surface roughness of PMEDM in rough machining. The machining efficiency of PMEDM can be highly increased by selecting proper discharge parameters (increasing peak current, reducing pulse width) with approximate surface roughness in comparison with conventional EDM machining. Although PMEDM can improve machining efficiency in rough efficiency, but a series of problems like electrode wear, efficiently separation of machined scraps from the powder mixed working fluid, should be solved before PMEDM machining is really applied in rough machining. Experiments result shows that powder mixed EDM machining can obviously improve machining efficiency at the same surface roughness by selecting proper discharging parameters, and can provide reference accordingly for the application of PMEDM machining technology in rough machining. 展开更多
关键词 powder Mixed EDM rough machining machining efficiency surface roughness
下载PDF
Effect of Recycled Mixed Powder on the Mechanical Properties and Microstructure of Concrete
3
作者 Chao Liu Huawei Liu Jian Wu 《Journal of Renewable Materials》 SCIE EI 2022年第5期1397-1414,共18页
In this paper,recycled bricks and recycled concrete were applied to prepare eco-friendly recycled mixed powder(RMP)cementitious material,as a supplementary to replace conventional cement for improve the recycling of c... In this paper,recycled bricks and recycled concrete were applied to prepare eco-friendly recycled mixed powder(RMP)cementitious material,as a supplementary to replace conventional cement for improve the recycling of construction and demolition waste.Based on the effect of cementitious materials on the hydration of silicate cement,the effects of RMP on the workability,mechanical properties and microstructure of recycled mixed powder concrete(RMPC)with the different replacement ratios and the 8:4 and 6:4 mixing ratio of recycled brick powder(RBP)and recycled concrete powder(RCP)were investigated.The results showed that the fluidity of the mix decreased with increasing of the replacement ratio and the mixing ratio of RBP and RCP,but the influence of the fluidity was smaller within 15%replacement ratio.As the replacement ratio increases,the internal pore structure of RMPC tends to be loose and porous,which exhibits a significant pore volume distribution characteristic.The number of large capillaries was considerably increased at replacement ratio of 45%.The 7 d compressive strength of RMPC was slightly lower than that of ordinary concrete.The compressive and splitting tensile strengths of RMPC at 28 d increased by 4.2%and 10.1%,respectively,with increasing curing age at 15%replacement ratio and 6:4 mixing ratio.The RMPC mechanical strengths with RBP and RCP at the mixing ratio of 6:4 was higher than those of 8:2.Finally,a basis for the recycling of RBP and RCP in the construction industry can be provided by the results of this study. 展开更多
关键词 Recycled concrete recycled mixed powder pore structure mechanical properties
下载PDF
Characterization of nanoparticle mixed 316L powder for additive manufacturing
4
作者 Wengang Zhai Wei Zhou +1 位作者 Sharon Mui Ling Nai Jun Wei 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第12期162-168,共7页
Nanoparticles reinforced steels have many advantaged mechanical properties.Additive manufacturing offers a new method for fabricating nanoparticles reinforced high performance metal components.In this work,we report t... Nanoparticles reinforced steels have many advantaged mechanical properties.Additive manufacturing offers a new method for fabricating nanoparticles reinforced high performance metal components.In this work,we report the application of low energy ball milling in mixing nanoparticles and micron 316 L powder.With this method,0.3 and 1.0 wt% Y2 O3 nanoparticles can be uniformly distributed on the surface of 316 L powder with the parameters of ball-to-powder ratio at 1:1,speed at 90 rpm and 7 h of mixing.The matrix 316 L powders remain spherical in shape after the mixing process.In the meantime,the effect of low energy ball milling and the addition of Y2 O3 nanoparticles on the powder characteristics(flowability,apparent density and tap density) are also studied.Results show that the process of low energy ball milling itself can slightly decrease the flowability and apparent density of the 316 L powder.The addition of 0.3 and 1.0 wt% Y2 O3 nanoparticles can also decrease the flowability,the tap density and the apparent density compared with the original 316 L powder.All of these changes result from the rough surface of the mixed powder produced by ball milling and the addition of Y2 O3 nanoparticles.The powder’s rough surface can increase the coefficient of friction of powders.The mixture of 316 L powder and Y2 O3 nanoparticles can be successfully used for selective laser melting(SLM).The relative density of SLM 316 L-Y2 O3 is measured at 99.5%.However,Y2 O3 agglomerations were observed which is due to the poor wettability between 316 L and Y2 O3. 展开更多
关键词 powder mixing powder characterization FLOWABILITY Apparent density Tap density Additive manufacturing
原文传递
Microstructure evolution and mechanical behavior of Ni-based single crystal superalloy joint brazed with mixed powder at elevated temperature 被引量:2
5
作者 Guanglei Wang Yuan Sun +8 位作者 Xinguang Wang Jide Liu Jinlai Liu Jinguo Li Jinjiang Yu Yizhou Zhou Tao Jin Xudong Sun Xiaofeng Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第10期1219-1226,共8页
Brazing of a Ni-based single crystal superalloy has been investigated with the additive Ni-based superalloy and filler Ni–Cr–W–B alloy at 1260℃, and attentions were paid to the microstructure evolution during braz... Brazing of a Ni-based single crystal superalloy has been investigated with the additive Ni-based superalloy and filler Ni–Cr–W–B alloy at 1260℃, and attentions were paid to the microstructure evolution during brazing and the stress-rupture behavior at 980℃ of such brazed joints after homogenization. Microstructure in the brazed joint generally includes brazing alloy zone(BAZ), isothermally solidified zone(ISZ) and diffusion affected zone(DAZ). Microstructure evolution during this brazing process is discussed at the heating stage, the holding stage and the cooling stage respectively, according to the diffusion path of B atoms. Initially well-distributed γ’/γ’ microstructure in the homogenized bonded zone after heat treatment and substantial γ’ rafts enhance the post-brazed joint to obtain a stress-rupture lifetime of more than 120 h at 980℃/250 MPa. On the other hand, the decreased stress-rupture behavior of post-brazed joint, compared with parenting material, is ascribed to the presence of inside brazing porosity and stray grain boundary, which not only reduces the effective loading-carrying area but also offers preferential sites for creep vacancy aggregation to further soften stray grain boundary. And finally an early fracture of these post-brazed joints through the intergranular microholes aggregation and growth mode under this testing condition was observed. 展开更多
关键词 Ni-based single crystal superalloy Mixed powder brazing Microstructure evolution Fracture behavior Brazing porosity
原文传递
A Comparative Study on the Microstructure and Properties of ITO Targets and Thin Films Prepared from Two Different Powders 被引量:1
6
作者 Fangsheng Mei Tiechui Yuan +1 位作者 Ruidi Li Jingwei Huang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第5期675-693,共19页
With the rapid development of indium tin oxide(ITO)in the electronic display industry,choosing which raw powders to prepare high-quality ITO targets has always been a controversial topic.In the work,in order to clearl... With the rapid development of indium tin oxide(ITO)in the electronic display industry,choosing which raw powders to prepare high-quality ITO targets has always been a controversial topic.In the work,in order to clearly understand the effect of the raw powders on the microstructure and properties of ITO targets and thin films,tin-doped indium oxide(dITO)and In_(2)O_3-SnO_(2)mixed(mITO)powders were chosen to prepare ITO targets for depositing the films and a comparative study on their microstructure and properties was conducted.It is found that,(1)dITO targets possess a higher solid solubility of tin in indium oxide and more uniform elemental distribution,while there are a higher density,a finer grain size and a higher mass ratio of In_(2)O_3 to SnO_(2)for the mITO targets;(2)dITO films with more coarser columnar grains and a rougher surface prefer to grow along the[100]direction in an Ar atmosphere;(3)the conductive property of ITO films only depends on the doping amount of tin and is independent of the raw powders and the preparation process of the target source;(4)dITO films possess the superior optical property and narrower optical band gap;(5)the etching property of mITO films is superior to that of dITO films due to the lower solid solubility of tin in indium oxide. 展开更多
关键词 Tin-doped indium oxide In_(2)O_3-SnO_(2) mixed powder Solid solubility of tin in indium oxide Photoelectric property Etching property
原文传递
FE SIMULATION AND EXPERIMENTAL VALIDATION OF POWDER MIXED EDM PROCESS FOR ESTIMATING THE TEMPERATURE DISTRIBUTION AND VOLUME REMOVED IN SINGLE CRATER
7
作者 ANIRBAN BHATTACHARYA AJAY BATISH KULWINDER SINGH 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2012年第2期167-188,共22页
This study reports the results of a finite element simulation of powder mixed electric discharge machining process for H11 Hot Die steel material using relevant boundary conditions and reasonable assumptions.The crate... This study reports the results of a finite element simulation of powder mixed electric discharge machining process for H11 Hot Die steel material using relevant boundary conditions and reasonable assumptions.The crater shape was developed using simulated temperature profiles to estimate the volume removed in a single crater.The temperature distribution on the workpiece was used to predict the cooling rate and calculate the stresses generated due to thermal loading.Subsequently,the simulation results were experimentally validated by physically measuring the crater shape and volume.From the results it was concluded that about 25%of heat is transmitted to the workpiece during machining at the process conditions used in the experiment.The microscopic pictures showed bigger craters with increase in current.The machined surface showed overlapping craters with surface cracks suggesting a high cooling rate. 展开更多
关键词 Finite element simulation powder mixed electric discharge machining CRATER cooling rate stress experimental validation.
原文传递
Finite element modeling and analysis of powder mixed electric discharge machining process for temperature distribution and volume removal considering multiple craters
8
作者 Hardeep Singh Anirban Bhattacharya Ajay Batish 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2014年第3期115-135,共21页
Powder mixed electric discharge machining(PMEDM)is one of the modern developments in electric discharge machining(EDM)process.In the present work,finite element modeling has been carried out considering randomly orien... Powder mixed electric discharge machining(PMEDM)is one of the modern developments in electric discharge machining(EDM)process.In the present work,finite element modeling has been carried out considering randomly oriented multiple sparks during PMEDM.Transient thermal analysis is done to obtain temperature distribution,volume removal,and proportion of volume removed by melting and evaporation at different current,pulse on time and fraction of heat that enters to work piece.Gradually growing spark behavior and Gaussian distribution of heat source is used to simulate multiple craters.Temperature distribution along radial direction shows peak temperature at center of spark and thereafter a gradual decrease with increase in radial distance.Along depth direction temperature sharply decreases that forms wider craters with shallow depth in PMEDM.Peak temperature and volume removal increases with current more rapidly.Volume removal by melting is much higher than evaporation at lower current settings and with higher current almost equal amount of material is removed by melting and evaporation thus reducing the re-solidification of melted material.Current plays a significant role behind the contribution of material removal by evaporation followed by fraction of heat.Increase in pulse on duration increases the total volume of material removal however does not significantly increase the proportion of volume removal by vaporization. 展开更多
关键词 Finite element simulation powder mixed electric discharge machining temperature distribution volume removal multiple sparks
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部