The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting obj...The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting objectives of OPF, instead of transforming multi-objective functions into a single objective function. The main idea of HMOABC is to extend original ABC algorithm to multi-objective and cooperative mode by combining the Pareto dominance and divide-and-conquer approach. HMOABC is then used in the 30-bus IEEE test system for solving the OPF problem considering the cost, loss, and emission impacts. The simulation results show that the HMOABC is superior to other algorithms in terms of optimization accuracy and computation robustness.展开更多
Based on the general methods in power flow calculation of power system and on conceptions and classifications of parallel algorithm, a new approach named Dynamic Asynchronous Parallel Algorithm that applies to the onl...Based on the general methods in power flow calculation of power system and on conceptions and classifications of parallel algorithm, a new approach named Dynamic Asynchronous Parallel Algorithm that applies to the online analysis and real-time dispatching and controlling of large-scale power network was put forward in this paper. Its performances of high speed and dynamic following have been verified on IEEE-14 bus system.展开更多
The result of OPF whose task is to compute the voltage and angle of each node in power system is the basic of stability calculation and failure analysis in power system. For this goal, the idea of simulated annealing ...The result of OPF whose task is to compute the voltage and angle of each node in power system is the basic of stability calculation and failure analysis in power system. For this goal, the idea of simulated annealing method is introduced, mixed with the greedy randomized algorithm (GRASP), and then the hybrid SA algorithm is obtained. The algorithm is applied to the multi-objective optimal power flow calculation of power system, and the effectiveness of the algorithm given in this paper is verified by analysis of examples.展开更多
Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, i...Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, it is minimizing optimization problem and subjected to many complex objective functions and constraints. Hence, firefly algorithm is used to solve OPF in this paper. The aim of the firefly is to optimize the control variables, namely generated real power, voltage magnitude and tap setting of transformers. Flexible AC Transmission system (FACTS) devices may used in the power system to improve the quality of the power supply and to reduce the cost of the generation. FACTS devices are classified into series, shunt, shunt-series and series-series connected devices. Unified power flow controller (UPFC) is shunt-series type device that posses all capabilities to control real, reactive powers, voltage and reactance of the connected line in the power system. Hence, UPFC is included in the considered IEEE 30 bus for the OPF solution.展开更多
In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, ...In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, since there is instabilities in the global market, implications of global financial crisis and the rapid fluctuations of prices, a fuzzy representation of the optimal power flow problem has been defined, where the input data involve many parameters whose possible values may be assigned by the expert. Secondly, by enhancing ant colony optimization through genetic algorithm, a strong robustness and more effectively algorithm was created. Also, stable Pareto set of solutions has been detected, where in a practical sense only Pareto optimal solutions that are stable are of interest since there are always uncertainties associated with efficiency data. The results on the standard IEEE systems demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal nondominated solutions of the multiobjective OPF.展开更多
In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the us...In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the use of controllable FACTS devices. Two types of FACTS devices, thyristor controlled series compensators (TCSC) and Static VAR Compensator (SVC) are considered in this method. The basic bacterial foraging algorithm (BFA) is an evolutionary optimization technique inspired by the foraging behavior of the E. coli bacteria. The strategy of the OPF problem is decomposed in two sub-problems, the first sub-problem related to active power planning to minimize the fuel cost function, and the second sub-problem designed to make corrections to the voltage deviation and reactive power violation based in an efficient reactive power planning of multi Static VAR Compensator (SVC). The specified power flow control constraints due to the use of FACTS devices are included in the OPF problem. The proposed method decomposes the solution of such modified OPF problem into two sub problems’ iteration. The first sub problem is a power flow control problem and the second sub problem is a modified Bacterial foraging algorithm (MBFA) OPF problem. The two sub problems are solved iteratively until convergence. Case studies are presented to show the effectiveness of the proposed method.展开更多
Recently,power electronic transformers(PETs)have received widespread attention owing to their flexible networking,diverse operating modes,and abundant control objects.In this study,we established a steady-state model ...Recently,power electronic transformers(PETs)have received widespread attention owing to their flexible networking,diverse operating modes,and abundant control objects.In this study,we established a steady-state model of PETs and applied it to the power flow calculation of AC-DC hybrid systems with PETs,considering the topology,power balance,loss,and control characteristics of multi-port PETs.To address new problems caused by the introduction of the PET port and control equations to the power flow calculation,this study proposes an iterative method of AC-DC mixed power flow decoupling based on step optimization,which can achieve AC-DC decoupling and effectively improve convergence.The results show that the proposed algorithm improves the iterative method and overcomes the overcorrection and initial value sensitivity problems of conventional iterative algorithms.展开更多
Voltage stability has become an important issue in planning and operation of many power systems. This work includes multi-objective evolutionary algorithm techniques such as Genetic Algorithm (GA) and Non-dominated So...Voltage stability has become an important issue in planning and operation of many power systems. This work includes multi-objective evolutionary algorithm techniques such as Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm II (NSGA II) approach for solving Voltage Stability Constrained-Optimal Power Flow (VSC-OPF). Base case generator power output, voltage magnitude of generator buses are taken as the control variables and maximum L-index of load buses is used to specify the voltage stability level of the system. Multi-Objective OPF, formulated as a multi-objective mixed integer nonlinear optimization problem, minimizes fuel cost and minimizes emission of gases, as well as improvement of voltage profile in the system. NSGA-II based OPF-case 1-Two objective-Min Fuel cost and Voltage stability index;case 2-Three objective-Min Fuel cost, Min Emission cost and Voltage stability index. The above method is tested on standard IEEE 30-bus test system and simulation results are done for base case and the two severe contingency cases and also on loaded conditions.展开更多
随着电力系统的快速发展和复杂性日益增加,最优潮流(Optimal Power Flow,OPF)计算作为电力系统分析的关键环节,对于提高电网的运行效率和可靠性具有重要意义。文章提出了一种基于自适应人工蛙跳觅食算法的最优潮流计算方法,旨在解决传...随着电力系统的快速发展和复杂性日益增加,最优潮流(Optimal Power Flow,OPF)计算作为电力系统分析的关键环节,对于提高电网的运行效率和可靠性具有重要意义。文章提出了一种基于自适应人工蛙跳觅食算法的最优潮流计算方法,旨在解决传统最优潮流计算方法在处理大规模非线性问题时的不足。为了解决算法在处理复杂电力系统问题时存在收敛速度慢和易陷入局部最优的问题,文章引入自适应策略,通过动态调整算法参数,提高算法的全局搜索能力和收敛速度。仿真实验结果表明,所提出的方法在解的质量、收敛速度和算法稳定性方面均表现出显著的优势。展开更多
基金Projects(61105067,61174164)supported by the National Natural Science Foundation of China
文摘The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting objectives of OPF, instead of transforming multi-objective functions into a single objective function. The main idea of HMOABC is to extend original ABC algorithm to multi-objective and cooperative mode by combining the Pareto dominance and divide-and-conquer approach. HMOABC is then used in the 30-bus IEEE test system for solving the OPF problem considering the cost, loss, and emission impacts. The simulation results show that the HMOABC is superior to other algorithms in terms of optimization accuracy and computation robustness.
文摘Based on the general methods in power flow calculation of power system and on conceptions and classifications of parallel algorithm, a new approach named Dynamic Asynchronous Parallel Algorithm that applies to the online analysis and real-time dispatching and controlling of large-scale power network was put forward in this paper. Its performances of high speed and dynamic following have been verified on IEEE-14 bus system.
文摘The result of OPF whose task is to compute the voltage and angle of each node in power system is the basic of stability calculation and failure analysis in power system. For this goal, the idea of simulated annealing method is introduced, mixed with the greedy randomized algorithm (GRASP), and then the hybrid SA algorithm is obtained. The algorithm is applied to the multi-objective optimal power flow calculation of power system, and the effectiveness of the algorithm given in this paper is verified by analysis of examples.
文摘Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, it is minimizing optimization problem and subjected to many complex objective functions and constraints. Hence, firefly algorithm is used to solve OPF in this paper. The aim of the firefly is to optimize the control variables, namely generated real power, voltage magnitude and tap setting of transformers. Flexible AC Transmission system (FACTS) devices may used in the power system to improve the quality of the power supply and to reduce the cost of the generation. FACTS devices are classified into series, shunt, shunt-series and series-series connected devices. Unified power flow controller (UPFC) is shunt-series type device that posses all capabilities to control real, reactive powers, voltage and reactance of the connected line in the power system. Hence, UPFC is included in the considered IEEE 30 bus for the OPF solution.
文摘In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, since there is instabilities in the global market, implications of global financial crisis and the rapid fluctuations of prices, a fuzzy representation of the optimal power flow problem has been defined, where the input data involve many parameters whose possible values may be assigned by the expert. Secondly, by enhancing ant colony optimization through genetic algorithm, a strong robustness and more effectively algorithm was created. Also, stable Pareto set of solutions has been detected, where in a practical sense only Pareto optimal solutions that are stable are of interest since there are always uncertainties associated with efficiency data. The results on the standard IEEE systems demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal nondominated solutions of the multiobjective OPF.
文摘In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the use of controllable FACTS devices. Two types of FACTS devices, thyristor controlled series compensators (TCSC) and Static VAR Compensator (SVC) are considered in this method. The basic bacterial foraging algorithm (BFA) is an evolutionary optimization technique inspired by the foraging behavior of the E. coli bacteria. The strategy of the OPF problem is decomposed in two sub-problems, the first sub-problem related to active power planning to minimize the fuel cost function, and the second sub-problem designed to make corrections to the voltage deviation and reactive power violation based in an efficient reactive power planning of multi Static VAR Compensator (SVC). The specified power flow control constraints due to the use of FACTS devices are included in the OPF problem. The proposed method decomposes the solution of such modified OPF problem into two sub problems’ iteration. The first sub problem is a power flow control problem and the second sub problem is a modified Bacterial foraging algorithm (MBFA) OPF problem. The two sub problems are solved iteratively until convergence. Case studies are presented to show the effectiveness of the proposed method.
基金supported by the National Key Research and Development Program of China(2017YFB0903300).
文摘Recently,power electronic transformers(PETs)have received widespread attention owing to their flexible networking,diverse operating modes,and abundant control objects.In this study,we established a steady-state model of PETs and applied it to the power flow calculation of AC-DC hybrid systems with PETs,considering the topology,power balance,loss,and control characteristics of multi-port PETs.To address new problems caused by the introduction of the PET port and control equations to the power flow calculation,this study proposes an iterative method of AC-DC mixed power flow decoupling based on step optimization,which can achieve AC-DC decoupling and effectively improve convergence.The results show that the proposed algorithm improves the iterative method and overcomes the overcorrection and initial value sensitivity problems of conventional iterative algorithms.
文摘Voltage stability has become an important issue in planning and operation of many power systems. This work includes multi-objective evolutionary algorithm techniques such as Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm II (NSGA II) approach for solving Voltage Stability Constrained-Optimal Power Flow (VSC-OPF). Base case generator power output, voltage magnitude of generator buses are taken as the control variables and maximum L-index of load buses is used to specify the voltage stability level of the system. Multi-Objective OPF, formulated as a multi-objective mixed integer nonlinear optimization problem, minimizes fuel cost and minimizes emission of gases, as well as improvement of voltage profile in the system. NSGA-II based OPF-case 1-Two objective-Min Fuel cost and Voltage stability index;case 2-Three objective-Min Fuel cost, Min Emission cost and Voltage stability index. The above method is tested on standard IEEE 30-bus test system and simulation results are done for base case and the two severe contingency cases and also on loaded conditions.
文摘随着电力系统的快速发展和复杂性日益增加,最优潮流(Optimal Power Flow,OPF)计算作为电力系统分析的关键环节,对于提高电网的运行效率和可靠性具有重要意义。文章提出了一种基于自适应人工蛙跳觅食算法的最优潮流计算方法,旨在解决传统最优潮流计算方法在处理大规模非线性问题时的不足。为了解决算法在处理复杂电力系统问题时存在收敛速度慢和易陷入局部最优的问题,文章引入自适应策略,通过动态调整算法参数,提高算法的全局搜索能力和收敛速度。仿真实验结果表明,所提出的方法在解的质量、收敛速度和算法稳定性方面均表现出显著的优势。