Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tot...Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs.展开更多
Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relati...Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relationship between research funding and citations of papers using 831,337 documents recorded in the Web of Science database.Findings:The original results reveal general characteristics of the diffusion of science in research fields:a)Funded articles receive higher citations compared to unfunded papers in journals;b)Funded articles exhibit a super-linear growth in citations,surpassing the increase seen in unfunded articles.This finding reveals a higher diffusion of scientific knowledge in funded articles.Moreover,c)funded articles in both basic and applied sciences demonstrate a similar expected change in citations,equivalent to about 1.23%,when the number of funded papers increases by 1%in journals.This result suggests,for the first time,that funding effect of scientific research is an invariant driver,irrespective of the nature of the basic or applied sciences.Originality/value:This evidence suggests empirical laws of funding for scientific citations that explain the importance of robust funding mechanisms for achieving impactful research outcomes in science and society.These findings here also highlight that funding for scientific research is a critical driving force in supporting citations and the dissemination of scientific knowledge in recorded documents in both basic and applied sciences.Practical implications:This comprehensive result provides a holistic view of the relationship between funding and citation performance in science to guide policymakers and R&D managers with science policies by directing funding to research in promoting the scientific development and higher diffusion of results for the progress of human society.展开更多
The P-type update law has been the mainstream technique used in iterative learning control(ILC)systems,which resembles linear feedback control with asymptotical convergence.In recent years,finite-time control strategi...The P-type update law has been the mainstream technique used in iterative learning control(ILC)systems,which resembles linear feedback control with asymptotical convergence.In recent years,finite-time control strategies such as terminal sliding mode control have been shown to be effective in ramping up convergence speed by introducing fractional power with feedback.In this paper,we show that such mechanism can equally ramp up the learning speed in ILC systems.We first propose a fractional power update rule for ILC of single-input-single-output linear systems.A nonlinear error dynamics is constructed along the iteration axis to illustrate the evolutionary converging process.Using the nonlinear mapping approach,fast convergence towards the limit cycles of tracking errors inherently existing in ILC systems is proven.The limit cycles are shown to be tunable to determine the steady states.Numerical simulations are provided to verify the theoretical results.展开更多
A power-law (y = cx<sup>n</sup>) signature between process energy budget (kJ) and process energy density (kJ·ml<sup>-1</sup>) of microwave-assisted synthesis of silver and gold nanostructu...A power-law (y = cx<sup>n</sup>) signature between process energy budget (kJ) and process energy density (kJ·ml<sup>-1</sup>) of microwave-assisted synthesis of silver and gold nanostructures has been recently described [Law and Denis. AJAC, 14(4), 149-174, (2023)]. This study explores this relation further for palladium, platinum, and zinc oxide nanostructures. Parametric cluster analysis and statistical analysis is used to test the power-law signature of over four orders of magnitude as a function of six microwave applicator-types metal precursor, non-Green Chemistry synthesis and claimed Green Chemistry. It is found that for the claimed Green Chemistry, process energy budget ranges from 0.291 to 900 kJ, with a residual error ranging between −33 to +25.9 kJ·ml<sup>-1</sup>. The non-Green Chemistry synthesis has a higher process energy budget range from 3.2 kJ to 3.3 MJ, with a residual error of −33.3 to +245.3 kJ·ml<sup>-1</sup>. It is also found that the energy profile over time produced by software controlled digestion applicators is poorly reported which leads to residual error problematic outliers that produce possible phase-transition in the power-law signature. The original Au and Ag database and new Pd, Pt and ZnO database (with and without problematic outliers) yield a global microwave-assisted synthesis power-law signature constants of c = 0.7172 ± 0.3214 kJ·ml<sup>-1</sup> at x-axes = 0.001 kJ, and the exponent, n = 0.791 ± 0.055. The information in this study is aimed to understand variations in historical microwave-assisted synthesis processes, and develop new scale-out synthesis through process intensification.展开更多
With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these...With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well.展开更多
As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst...As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst the global transition towards cleaner forms of energy,countries all around the world are vigorously developing PV technology.展开更多
Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified ...Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.展开更多
Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the re...Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.展开更多
Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple stake...Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple staked direct bonded copper(DBC) unit based power module packaging method to parallel more chips. This method utilizes mutual inductance cancellation effect to reduce parasitic inductance. Because the conduction area in the new package is doubled, the overall area of power module can be reduced. Entire power module is divided into smaller units to enhance manufacture yield, and improve design freedom. This paper provides a detailed design, analysis and fabrication procedure for the proposed package structure. Additionally, this paper offers several feasible solutions for the connection between power terminals and DBC untis. With the structure, 18dies were paralleled for each phase-leg in a econodual size power module. Both simulation and double pulse test results demonstrate that, compared to conventional layouts, the proposed package method has 74.8% smaller parasitic inductance and 34.9% lower footprint.展开更多
Today’s forensic science introduces a new research area for digital image analysis formultimedia security.So,Image authentication issues have been raised due to the wide use of image manipulation software to obtain a...Today’s forensic science introduces a new research area for digital image analysis formultimedia security.So,Image authentication issues have been raised due to the wide use of image manipulation software to obtain an illegitimate benefit or createmisleading publicity by using tempered images.Exiting forgery detectionmethods can classify only one of the most widely used Copy-Move and splicing forgeries.However,an image can contain one or more types of forgeries.This study has proposed a hybridmethod for classifying Copy-Move and splicing images using texture information of images in the spatial domain.Firstly,images are divided into equal blocks to get scale-invariant features.Weber law has been used for getting texture features,and finally,XGBOOST is used to classify both Copy-Move and splicing forgery.The proposed method classified three types of forgeries,i.e.,splicing,Copy-Move,and healthy.Benchmarked(CASIA 2.0,MICCF200)and RCMFD datasets are used for training and testing.On average,the proposed method achieved 97.3% accuracy on benchmarked datasets and 98.3% on RCMFD datasets by applying 10-fold cross-validation,which is far better than existing methods.展开更多
The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting th...The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting thermal energy into mechanical work and electric power.The operation of the generator encounters challenges,including high temperature,high pressure,high rotational speed,and other engineering problems,such as leakage.Experimental studies of sCO_(2)turbines are insufficient because of the significant difficulties in turbine manufacturing and system construction.Unlike most experimental investigations that primarily focus on 100 kW‐or MW‐scale power generation systems,we consider,for the first time,a small‐scale power generator using sCO_(2).A partial admission axial turbine was designed and manufactured with a rated rotational speed of 40,000 rpm,and a CO_(2)transcritical power cycle test loop was constructed to validate the performance of our manufactured generator.A resistant gas was proposed in the constructed turbine expander to solve the leakage issue.Both dynamic and steady performances were investigated.The results indicated that a peak electric power of 11.55 kW was achieved at 29,369 rpm.The maximum total efficiency of the turbo‐generator was 58.98%,which was affected by both the turbine rotational speed and pressure ratio,according to the proposed performance map.展开更多
文摘Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs.
文摘Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relationship between research funding and citations of papers using 831,337 documents recorded in the Web of Science database.Findings:The original results reveal general characteristics of the diffusion of science in research fields:a)Funded articles receive higher citations compared to unfunded papers in journals;b)Funded articles exhibit a super-linear growth in citations,surpassing the increase seen in unfunded articles.This finding reveals a higher diffusion of scientific knowledge in funded articles.Moreover,c)funded articles in both basic and applied sciences demonstrate a similar expected change in citations,equivalent to about 1.23%,when the number of funded papers increases by 1%in journals.This result suggests,for the first time,that funding effect of scientific research is an invariant driver,irrespective of the nature of the basic or applied sciences.Originality/value:This evidence suggests empirical laws of funding for scientific citations that explain the importance of robust funding mechanisms for achieving impactful research outcomes in science and society.These findings here also highlight that funding for scientific research is a critical driving force in supporting citations and the dissemination of scientific knowledge in recorded documents in both basic and applied sciences.Practical implications:This comprehensive result provides a holistic view of the relationship between funding and citation performance in science to guide policymakers and R&D managers with science policies by directing funding to research in promoting the scientific development and higher diffusion of results for the progress of human society.
基金supported by the National Natural Science Foundation of China(62173333)Australian Research Council Discovery Program(DP200101199)。
文摘The P-type update law has been the mainstream technique used in iterative learning control(ILC)systems,which resembles linear feedback control with asymptotical convergence.In recent years,finite-time control strategies such as terminal sliding mode control have been shown to be effective in ramping up convergence speed by introducing fractional power with feedback.In this paper,we show that such mechanism can equally ramp up the learning speed in ILC systems.We first propose a fractional power update rule for ILC of single-input-single-output linear systems.A nonlinear error dynamics is constructed along the iteration axis to illustrate the evolutionary converging process.Using the nonlinear mapping approach,fast convergence towards the limit cycles of tracking errors inherently existing in ILC systems is proven.The limit cycles are shown to be tunable to determine the steady states.Numerical simulations are provided to verify the theoretical results.
文摘A power-law (y = cx<sup>n</sup>) signature between process energy budget (kJ) and process energy density (kJ·ml<sup>-1</sup>) of microwave-assisted synthesis of silver and gold nanostructures has been recently described [Law and Denis. AJAC, 14(4), 149-174, (2023)]. This study explores this relation further for palladium, platinum, and zinc oxide nanostructures. Parametric cluster analysis and statistical analysis is used to test the power-law signature of over four orders of magnitude as a function of six microwave applicator-types metal precursor, non-Green Chemistry synthesis and claimed Green Chemistry. It is found that for the claimed Green Chemistry, process energy budget ranges from 0.291 to 900 kJ, with a residual error ranging between −33 to +25.9 kJ·ml<sup>-1</sup>. The non-Green Chemistry synthesis has a higher process energy budget range from 3.2 kJ to 3.3 MJ, with a residual error of −33.3 to +245.3 kJ·ml<sup>-1</sup>. It is also found that the energy profile over time produced by software controlled digestion applicators is poorly reported which leads to residual error problematic outliers that produce possible phase-transition in the power-law signature. The original Au and Ag database and new Pd, Pt and ZnO database (with and without problematic outliers) yield a global microwave-assisted synthesis power-law signature constants of c = 0.7172 ± 0.3214 kJ·ml<sup>-1</sup> at x-axes = 0.001 kJ, and the exponent, n = 0.791 ± 0.055. The information in this study is aimed to understand variations in historical microwave-assisted synthesis processes, and develop new scale-out synthesis through process intensification.
基金supported by the National Science Foundation of China under Grant 62271062 and 62071063by the Zhijiang Laboratory Open Project Fund 2020LCOAB01。
文摘With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well.
文摘As a clean and renewable form of energy,photovoltaic(PV)power generation converts solar energy into electrical energy,reducing the consumption of fossil fuels and significantly lowering greenhouse gas emissions.Amidst the global transition towards cleaner forms of energy,countries all around the world are vigorously developing PV technology.
基金supported in part by the Scientific Foundation for Outstanding Young Scientists of Sichuan under Grant No.2021JDJQ0032in part by the National Natural Science Foundation of China under Grant No.52107128in part by the Natural Science Foundation of Sichuan Province under Grant No.2022NSFSC0436.
文摘Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.
基金financial support from the National Natural Science Foundation of China(Grant No.41827806)the Liaoning Provincial Science and Technology Program of China(Grant No.2022JH2/101300109).
文摘Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.
基金supported in part by National Key R&D Program of China (2021YFB2500600)CAS Youth multi-discipline project (JCTD-2021-09)Strategic Piority Research Program of Chinese Academy of Sciences (XDA28040100)。
文摘Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple staked direct bonded copper(DBC) unit based power module packaging method to parallel more chips. This method utilizes mutual inductance cancellation effect to reduce parasitic inductance. Because the conduction area in the new package is doubled, the overall area of power module can be reduced. Entire power module is divided into smaller units to enhance manufacture yield, and improve design freedom. This paper provides a detailed design, analysis and fabrication procedure for the proposed package structure. Additionally, this paper offers several feasible solutions for the connection between power terminals and DBC untis. With the structure, 18dies were paralleled for each phase-leg in a econodual size power module. Both simulation and double pulse test results demonstrate that, compared to conventional layouts, the proposed package method has 74.8% smaller parasitic inductance and 34.9% lower footprint.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R236),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Today’s forensic science introduces a new research area for digital image analysis formultimedia security.So,Image authentication issues have been raised due to the wide use of image manipulation software to obtain an illegitimate benefit or createmisleading publicity by using tempered images.Exiting forgery detectionmethods can classify only one of the most widely used Copy-Move and splicing forgeries.However,an image can contain one or more types of forgeries.This study has proposed a hybridmethod for classifying Copy-Move and splicing images using texture information of images in the spatial domain.Firstly,images are divided into equal blocks to get scale-invariant features.Weber law has been used for getting texture features,and finally,XGBOOST is used to classify both Copy-Move and splicing forgery.The proposed method classified three types of forgeries,i.e.,splicing,Copy-Move,and healthy.Benchmarked(CASIA 2.0,MICCF200)and RCMFD datasets are used for training and testing.On average,the proposed method achieved 97.3% accuracy on benchmarked datasets and 98.3% on RCMFD datasets by applying 10-fold cross-validation,which is far better than existing methods.
基金National Science Fund for Excellent Young Scholars,Grant/Award Number:52022066。
文摘The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting thermal energy into mechanical work and electric power.The operation of the generator encounters challenges,including high temperature,high pressure,high rotational speed,and other engineering problems,such as leakage.Experimental studies of sCO_(2)turbines are insufficient because of the significant difficulties in turbine manufacturing and system construction.Unlike most experimental investigations that primarily focus on 100 kW‐or MW‐scale power generation systems,we consider,for the first time,a small‐scale power generator using sCO_(2).A partial admission axial turbine was designed and manufactured with a rated rotational speed of 40,000 rpm,and a CO_(2)transcritical power cycle test loop was constructed to validate the performance of our manufactured generator.A resistant gas was proposed in the constructed turbine expander to solve the leakage issue.Both dynamic and steady performances were investigated.The results indicated that a peak electric power of 11.55 kW was achieved at 29,369 rpm.The maximum total efficiency of the turbo‐generator was 58.98%,which was affected by both the turbine rotational speed and pressure ratio,according to the proposed performance map.