In light of the prevailing issue that the existing convolutional neural network(CNN)power quality disturbance identification method can only extract single-scale features,which leads to a lack of feature information a...In light of the prevailing issue that the existing convolutional neural network(CNN)power quality disturbance identification method can only extract single-scale features,which leads to a lack of feature information and weak anti-noise performance,a new approach for identifying power quality disturbances based on an adaptive Kalman filter(KF)and multi-scale channel attention(MS-CAM)fused convolutional neural network is suggested.Single and composite-disruption signals are generated through simulation.The adaptive maximum likelihood Kalman filter is employed for noise reduction in the initial disturbance signal,and subsequent integration of multi-scale features into the conventional CNN architecture is conducted.The multi-scale features of the signal are captured by convolution kernels of different sizes so that the model can obtain diverse feature expressions.The attention mechanism(ATT)is introduced to adaptively allocate the extracted features,and the features are fused and selected to obtain the new main features.The Softmax classifier is employed for the classification of power quality disturbances.Finally,by comparing the recognition accuracy of the convolutional neural network(CNN),the model using the attention mechanism,the bidirectional long-term and short-term memory network(MS-Bi-LSTM),and the multi-scale convolutional neural network(MSCNN)with the attention mechanism with the proposed method.The simulation results demonstrate that the proposed method is higher than CNN,MS-Bi-LSTM,and MSCNN,and the overall recognition rate exceeds 99%,and the proposed method has significant classification accuracy and robust classification performance.This achievement provides a new perspective for further exploration in the field of power quality disturbance classification.展开更多
With increasing global concerns about clean energy in smart grids,the detection of power quality disturbances(PQDs)caused by energy instability is becoming more and more prominent.It is well acknowledged that the PQD ...With increasing global concerns about clean energy in smart grids,the detection of power quality disturbances(PQDs)caused by energy instability is becoming more and more prominent.It is well acknowledged that the PQD effects on power grid equipment are destructive and hazardous,which causes irreversible damage to underlying electrical/electronic equipment of the concerned intelligent grids.In order to ensure safe and reliable equipment implementation,appropriate PQDdetection technologiesmust be adopted to avoid such adverse effects.This paper summarizes the newly proposed and traditional PQD detection techniques in order to give a quick start to new researchers in the related field,where specific scenarios and events for which each technique is applicable are also clearly presented.Finally,comments on the future evolution of PQD detection techniques are given.Unlike the published review articles,this paper focuses on the new techniques from the last five years while providing a brief recap on traditional PQD detection techniques so as to supply researchers with a systematic and state-of-the-art review for PQD detection.展开更多
In this work,an Artificial Neural Network(ANN)based technique is suggested for classifying the faults which occur in hybrid power distribution systems.Power,which is generated by the solar and wind energy-based hybrid...In this work,an Artificial Neural Network(ANN)based technique is suggested for classifying the faults which occur in hybrid power distribution systems.Power,which is generated by the solar and wind energy-based hybrid system,is given to the grid at the Point of Common Coupling(PCC).A boost converter along with perturb and observe(P&O)algorithm is utilized in this system to obtain a constant link voltage.In contrast,the link voltage of the wind energy conversion system(WECS)is retained with the assistance of a Proportional Integral(PI)controller.The grid synchronization is tainted with the assis-tance of the d-q theory.For the analysis of faults like islanding,line-ground,and line-line fault,the ANN is utilized.The voltage signal is observed at the PCC,and the Discrete Wavelet Transform(DWT)is employed to obtain different features.Based on the collected features,the ANN classifies the faults in an effi-cient manner.The simulation is done in MATLAB and the results are also validated through the hardware implementation.Detailed fault analysis is carried out and the results are compared with the existing techniques.Finally,the Total harmonic distortion(THD)is lessened by 4.3%by using the proposed methodology.展开更多
Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The cl...Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term dis-turbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages.展开更多
A multiple power quality(MPQ)disturbance has two or more power quality(PQ)disturbances superimposed on a voltage signal.A compact and robust technique is required to identify and classify the MPQ disturbances.This man...A multiple power quality(MPQ)disturbance has two or more power quality(PQ)disturbances superimposed on a voltage signal.A compact and robust technique is required to identify and classify the MPQ disturbances.This manuscript investigated a hybrid algorithm which is designed using parallel processing of voltage with multiple power quality(MPQ)disturbance using stockwell transform(ST)and hilbert transform(HT).This will reduce the computational time to identify theMPQdisturbances,whichmakes the algorithm fast.A MPQ identification index(IPI)is computed using statistical features extracted from the voltage signal using the ST and HT.IPI has different patterns for various types of MPQ disturbances which effectively identify the MPQ disturbances.A MPQ time location index(IPL)is computed using the features extracted from the voltage signal using ST and HT.IPL effectively identifies the initiation and end of PQ disturbances and thereby locates the MPQ events with respect to time.Classification of MPQ disturbances is performed using decision rules in both the noise-free and noisy environments with a 20 dB noise to signal ratio(SNR).The performance of the proposed hybrid algorithm using ST and HT with rule-based decision tree(RBDT)is better compared to the ST and RBDT techniques in terms of accuracy of classification of MPQ disturbances.MATLAB software is used to perform the study.展开更多
This paper introduces a quick classification method of the power quality disturbances. Based on analyzing the characteristics of different electrical disturbance signals in time domain, four distinctive features are e...This paper introduces a quick classification method of the power quality disturbances. Based on analyzing the characteristics of different electrical disturbance signals in time domain, four distinctive features are extracted from electrical signals for classifying different power quality disturbances and then an automatic classifier is proposed. Using the proposed classification method,a PQ monitor of the classifying power quality disturbances is developed based on the TMS320F2812DSP micro-processor. Semi-physical simulation, lab experiment and field measurement results have verified that this proposed method can classify single or complex disturbance signals effectively.展开更多
The accuracy of unsteady-state disturbance analysis of power quality signals is reduced by the steadystate components with high amplitudes and energies. In this paper,a novel frequency-domain matching pursuits (FDMP) ...The accuracy of unsteady-state disturbance analysis of power quality signals is reduced by the steadystate components with high amplitudes and energies. In this paper,a novel frequency-domain matching pursuits (FDMP) algorithm is proposed to estimate the parameters of the steady-state components and separate the unsteady-state disturbances from power quality signals. Firstly,the time-frequency atoms and redundant dictionaries are constructed according to the characteristics of power quality signal spectra. Secondly,the steady-state components and unsteady-state disturbances of power quality signals are decomposed by FDMP into two mutually orthogonal subspaces in Hilbert space. Furthermore,the expressions for parameters calculation of steady-state components have been derived. The experiments show that the relative errors of frequency and amplitude estimations of steady-state components are less than 2 × 10 -4 and 5 × 10 -3 respectively,and phase estimation errors are less than 1. 6° under the existence of both interharmonics and unsteady-state disturbances. The steady-state components and unsteady-state disturbances are separated quickly and accurately.展开更多
The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wav...The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are suitable methods for power quality disturbance classification.展开更多
Concern towards power quality (PQ) has increased immensely due to the growing usage of high technology devices which are very sensitive towards voltage and current variations and the de-regulation of the electricity m...Concern towards power quality (PQ) has increased immensely due to the growing usage of high technology devices which are very sensitive towards voltage and current variations and the de-regulation of the electricity market. The impact of these voltage and current variations can lead to devices malfunction and production stoppages which lead to huge financial loss for the production company. The deregulation of electricity markets has made the industry become more competitive and distributed. Thus, a higher demand on reliability and quality of services will be required by the end customers. To ensure the power supply is at the highest quality, an automatic system for detection and localization of PQ activities in power system network is required. This paper proposed to use Slantlet Transform (SLT) with Support Vector Machine (SVM) to detect and localize several PQ disturbance, i.e. voltage sag, voltage swell, oscillatory-transient, odd-harmonics, interruption, voltage sag plus odd-harmonics, voltage swell plus odd-harmonics, voltage sag plus transient and pure sinewave signal were studied. The analysis on PQ disturbances signals was performed in two steps, which are extraction of feature disturbance and classification of the dis- turbance based on its type. To take on the characteristics of PQ signals, feature vector was constructed from the statistical value of the SLT signal coefficient and wavelets entropy at different nodes. The feature vectors of the PQ disturbances are then applied to SVM for the classification process. The result shows that the proposed method can detect and localize different type of single and multiple power quality signals. Finally, sensitivity of the proposed algorithm under noisy condition is investigated in this paper.展开更多
Around the globe, the necessity of green supply with a dedicated standard quality thrust of consumers is increasing day by day. The advancement in technology urges the electrical power system to deliver a high-quality...Around the globe, the necessity of green supply with a dedicated standard quality thrust of consumers is increasing day by day. The advancement in technology urges the electrical power system to deliver a high-quality rated undistorted sinusoidal current, the voltage at a constant desired standard frequency to its consumers. The present paper reveals a complete and inclusive study of power quality events, such as automatic classification and signal processing via creative techniques and the noises effect on the detection and classification of power quality disturbances. It’s planned to make a possible list for quick reference to obtain an extensive variety on the condition & status of available research for detection and classification for young engineers, designers and researchers who enter in the power quality field. The current extensive study is supported by a critical review of more than 200 publications on detection and classification techniques of power quality disturbances.展开更多
In this paper, a SVM classifier based on S-Transform is presented for power quality disturbances classification. Firstly, seven types of PQ events are created using Matlab simulation. These signals are analyzed to det...In this paper, a SVM classifier based on S-Transform is presented for power quality disturbances classification. Firstly, seven types of PQ events are created using Matlab simulation. These signals are analyzed to detect and localize PQ events via S-Transform by visual inspection. Then five significant features of the PQ disturbances are extracted from the S-Transform output. Afterwards, PQ disturbance samples with the five features are fed to SVM for training and automatic classification. Besides, particle swarm optimization is implemented to improve the performance of SVM. The results of the classification indicate that SVM classifier is an effective mechanism to detect and classify power quality disturbances.展开更多
In this paper, a method of power quality disturbance classification based on random matrix theory (RMT) is proposed. The method utilizes the power quality disturbance signal to construct a random matrix. By analyzing ...In this paper, a method of power quality disturbance classification based on random matrix theory (RMT) is proposed. The method utilizes the power quality disturbance signal to construct a random matrix. By analyzing the mean spectral radius (MSR) variation of the random matrix, the type and time of occurrence of power quality disturbance are classified. In this paper, the random matrix theory is used to analyze the voltage sag, swell and interrupt perturbation signals to classify the occurrence time, duration of the disturbance signal and thedepth of voltage sag or swell. Examples show that the method has strong anti-noise ability.展开更多
Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on mult...Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on multiresolution S-transform and decision tree was proposed.Firstly,according to IEEE standard,the signal models of seven single power quality disturbances and 17 combined power quality disturbances are given,and the disturbance waveform samples are generated in batches.Then,in order to improve the recognition accuracy,the adjustment factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform time-frequency domain analysis.On this basis,five disturbance time-frequency domain features are extracted,which quantitatively reflect the characteristics of the analyzed power quality disturbance signal,which is less than the traditional method based on S-transform.Finally,three classifiers such as K-nearest neighbor,support vector machine and decision tree algorithm are used to effectively complete the identification of power quality composite disturbances.Simulation results showthat the classification accuracy of decision tree algorithmis higher than that of K-nearest neighbor and support vector machine.Finally,the proposed method is compared with other commonly used recognition algorithms.Experimental results show that the proposedmethod is effective in terms of detection accuracy,especially for combined PQ interference.展开更多
基金The project is supported by the National Natural Science Foundation of China(52067013)the Key Projects of the Natural Science Foundation of Gansu Provincial Science and Technology Department(22JR5RA318).
文摘In light of the prevailing issue that the existing convolutional neural network(CNN)power quality disturbance identification method can only extract single-scale features,which leads to a lack of feature information and weak anti-noise performance,a new approach for identifying power quality disturbances based on an adaptive Kalman filter(KF)and multi-scale channel attention(MS-CAM)fused convolutional neural network is suggested.Single and composite-disruption signals are generated through simulation.The adaptive maximum likelihood Kalman filter is employed for noise reduction in the initial disturbance signal,and subsequent integration of multi-scale features into the conventional CNN architecture is conducted.The multi-scale features of the signal are captured by convolution kernels of different sizes so that the model can obtain diverse feature expressions.The attention mechanism(ATT)is introduced to adaptively allocate the extracted features,and the features are fused and selected to obtain the new main features.The Softmax classifier is employed for the classification of power quality disturbances.Finally,by comparing the recognition accuracy of the convolutional neural network(CNN),the model using the attention mechanism,the bidirectional long-term and short-term memory network(MS-Bi-LSTM),and the multi-scale convolutional neural network(MSCNN)with the attention mechanism with the proposed method.The simulation results demonstrate that the proposed method is higher than CNN,MS-Bi-LSTM,and MSCNN,and the overall recognition rate exceeds 99%,and the proposed method has significant classification accuracy and robust classification performance.This achievement provides a new perspective for further exploration in the field of power quality disturbance classification.
文摘With increasing global concerns about clean energy in smart grids,the detection of power quality disturbances(PQDs)caused by energy instability is becoming more and more prominent.It is well acknowledged that the PQD effects on power grid equipment are destructive and hazardous,which causes irreversible damage to underlying electrical/electronic equipment of the concerned intelligent grids.In order to ensure safe and reliable equipment implementation,appropriate PQDdetection technologiesmust be adopted to avoid such adverse effects.This paper summarizes the newly proposed and traditional PQD detection techniques in order to give a quick start to new researchers in the related field,where specific scenarios and events for which each technique is applicable are also clearly presented.Finally,comments on the future evolution of PQD detection techniques are given.Unlike the published review articles,this paper focuses on the new techniques from the last five years while providing a brief recap on traditional PQD detection techniques so as to supply researchers with a systematic and state-of-the-art review for PQD detection.
文摘In this work,an Artificial Neural Network(ANN)based technique is suggested for classifying the faults which occur in hybrid power distribution systems.Power,which is generated by the solar and wind energy-based hybrid system,is given to the grid at the Point of Common Coupling(PCC).A boost converter along with perturb and observe(P&O)algorithm is utilized in this system to obtain a constant link voltage.In contrast,the link voltage of the wind energy conversion system(WECS)is retained with the assistance of a Proportional Integral(PI)controller.The grid synchronization is tainted with the assis-tance of the d-q theory.For the analysis of faults like islanding,line-ground,and line-line fault,the ANN is utilized.The voltage signal is observed at the PCC,and the Discrete Wavelet Transform(DWT)is employed to obtain different features.Based on the collected features,the ANN classifies the faults in an effi-cient manner.The simulation is done in MATLAB and the results are also validated through the hardware implementation.Detailed fault analysis is carried out and the results are compared with the existing techniques.Finally,the Total harmonic distortion(THD)is lessened by 4.3%by using the proposed methodology.
基金Project (No. 50437010) supported by the Key Program of the Na-tional Natural Science Foundation of China
文摘Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term dis-turbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages.
文摘A multiple power quality(MPQ)disturbance has two or more power quality(PQ)disturbances superimposed on a voltage signal.A compact and robust technique is required to identify and classify the MPQ disturbances.This manuscript investigated a hybrid algorithm which is designed using parallel processing of voltage with multiple power quality(MPQ)disturbance using stockwell transform(ST)and hilbert transform(HT).This will reduce the computational time to identify theMPQdisturbances,whichmakes the algorithm fast.A MPQ identification index(IPI)is computed using statistical features extracted from the voltage signal using the ST and HT.IPI has different patterns for various types of MPQ disturbances which effectively identify the MPQ disturbances.A MPQ time location index(IPL)is computed using the features extracted from the voltage signal using ST and HT.IPL effectively identifies the initiation and end of PQ disturbances and thereby locates the MPQ events with respect to time.Classification of MPQ disturbances is performed using decision rules in both the noise-free and noisy environments with a 20 dB noise to signal ratio(SNR).The performance of the proposed hybrid algorithm using ST and HT with rule-based decision tree(RBDT)is better compared to the ST and RBDT techniques in terms of accuracy of classification of MPQ disturbances.MATLAB software is used to perform the study.
文摘This paper introduces a quick classification method of the power quality disturbances. Based on analyzing the characteristics of different electrical disturbance signals in time domain, four distinctive features are extracted from electrical signals for classifying different power quality disturbances and then an automatic classifier is proposed. Using the proposed classification method,a PQ monitor of the classifying power quality disturbances is developed based on the TMS320F2812DSP micro-processor. Semi-physical simulation, lab experiment and field measurement results have verified that this proposed method can classify single or complex disturbance signals effectively.
基金Sponsored by the Major Research Project of Power Grid Co. ,Ltd of Heilongjiang Province,China (Grant No.2010-222-3)the Foundamental Research Funds for the Central Universities (Grant No.ZZ1226)
文摘The accuracy of unsteady-state disturbance analysis of power quality signals is reduced by the steadystate components with high amplitudes and energies. In this paper,a novel frequency-domain matching pursuits (FDMP) algorithm is proposed to estimate the parameters of the steady-state components and separate the unsteady-state disturbances from power quality signals. Firstly,the time-frequency atoms and redundant dictionaries are constructed according to the characteristics of power quality signal spectra. Secondly,the steady-state components and unsteady-state disturbances of power quality signals are decomposed by FDMP into two mutually orthogonal subspaces in Hilbert space. Furthermore,the expressions for parameters calculation of steady-state components have been derived. The experiments show that the relative errors of frequency and amplitude estimations of steady-state components are less than 2 × 10 -4 and 5 × 10 -3 respectively,and phase estimation errors are less than 1. 6° under the existence of both interharmonics and unsteady-state disturbances. The steady-state components and unsteady-state disturbances are separated quickly and accurately.
文摘The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are suitable methods for power quality disturbance classification.
文摘Concern towards power quality (PQ) has increased immensely due to the growing usage of high technology devices which are very sensitive towards voltage and current variations and the de-regulation of the electricity market. The impact of these voltage and current variations can lead to devices malfunction and production stoppages which lead to huge financial loss for the production company. The deregulation of electricity markets has made the industry become more competitive and distributed. Thus, a higher demand on reliability and quality of services will be required by the end customers. To ensure the power supply is at the highest quality, an automatic system for detection and localization of PQ activities in power system network is required. This paper proposed to use Slantlet Transform (SLT) with Support Vector Machine (SVM) to detect and localize several PQ disturbance, i.e. voltage sag, voltage swell, oscillatory-transient, odd-harmonics, interruption, voltage sag plus odd-harmonics, voltage swell plus odd-harmonics, voltage sag plus transient and pure sinewave signal were studied. The analysis on PQ disturbances signals was performed in two steps, which are extraction of feature disturbance and classification of the dis- turbance based on its type. To take on the characteristics of PQ signals, feature vector was constructed from the statistical value of the SLT signal coefficient and wavelets entropy at different nodes. The feature vectors of the PQ disturbances are then applied to SVM for the classification process. The result shows that the proposed method can detect and localize different type of single and multiple power quality signals. Finally, sensitivity of the proposed algorithm under noisy condition is investigated in this paper.
文摘Around the globe, the necessity of green supply with a dedicated standard quality thrust of consumers is increasing day by day. The advancement in technology urges the electrical power system to deliver a high-quality rated undistorted sinusoidal current, the voltage at a constant desired standard frequency to its consumers. The present paper reveals a complete and inclusive study of power quality events, such as automatic classification and signal processing via creative techniques and the noises effect on the detection and classification of power quality disturbances. It’s planned to make a possible list for quick reference to obtain an extensive variety on the condition & status of available research for detection and classification for young engineers, designers and researchers who enter in the power quality field. The current extensive study is supported by a critical review of more than 200 publications on detection and classification techniques of power quality disturbances.
文摘In this paper, a SVM classifier based on S-Transform is presented for power quality disturbances classification. Firstly, seven types of PQ events are created using Matlab simulation. These signals are analyzed to detect and localize PQ events via S-Transform by visual inspection. Then five significant features of the PQ disturbances are extracted from the S-Transform output. Afterwards, PQ disturbance samples with the five features are fed to SVM for training and automatic classification. Besides, particle swarm optimization is implemented to improve the performance of SVM. The results of the classification indicate that SVM classifier is an effective mechanism to detect and classify power quality disturbances.
文摘In this paper, a method of power quality disturbance classification based on random matrix theory (RMT) is proposed. The method utilizes the power quality disturbance signal to construct a random matrix. By analyzing the mean spectral radius (MSR) variation of the random matrix, the type and time of occurrence of power quality disturbance are classified. In this paper, the random matrix theory is used to analyze the voltage sag, swell and interrupt perturbation signals to classify the occurrence time, duration of the disturbance signal and thedepth of voltage sag or swell. Examples show that the method has strong anti-noise ability.
基金Foundation of China(No.52067013)the Key Natural Science Fund Project of Gansu Provincial Department of Science and Technology(No.21JR7RA280)+1 种基金the Tianyou Innovation Team Science Foundation of Intelligent Power Supply and State Perception for Rail Transit(No.TY202010)the Natural Science Foundation of Gansu Province(No.20JR5RA395).
文摘Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on multiresolution S-transform and decision tree was proposed.Firstly,according to IEEE standard,the signal models of seven single power quality disturbances and 17 combined power quality disturbances are given,and the disturbance waveform samples are generated in batches.Then,in order to improve the recognition accuracy,the adjustment factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform time-frequency domain analysis.On this basis,five disturbance time-frequency domain features are extracted,which quantitatively reflect the characteristics of the analyzed power quality disturbance signal,which is less than the traditional method based on S-transform.Finally,three classifiers such as K-nearest neighbor,support vector machine and decision tree algorithm are used to effectively complete the identification of power quality composite disturbances.Simulation results showthat the classification accuracy of decision tree algorithmis higher than that of K-nearest neighbor and support vector machine.Finally,the proposed method is compared with other commonly used recognition algorithms.Experimental results show that the proposedmethod is effective in terms of detection accuracy,especially for combined PQ interference.