期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Data-based prediction and causality inference of nonlinear dynamics 被引量:6
1
作者 Huanfei Ma Siyang Leng Luonan Chen 《Science China Mathematics》 SCIE CSCD 2018年第3期403-420,共18页
Natural systems are typically nonlinear and complex, and it is of great interest to be able to reconstruct a system in order to understand its mechanism, which cannot only recover nonlinear behaviors but also predict ... Natural systems are typically nonlinear and complex, and it is of great interest to be able to reconstruct a system in order to understand its mechanism, which cannot only recover nonlinear behaviors but also predict future dynamics. Due to the advances of modern technology, big data becomes increasingly accessible and consequently the problem of reconstructing systems from measured data or time series plays a central role in many scientific disciplines. In recent decades, nonlinear methods rooted in state space reconstruction have been developed, and they do not assume any model equations but can recover the dynamics purely from the measured time series data. In this review, the development of state space reconstruction techniques will be introduced and the recent advances in systems prediction and causality inference using state space reconstruction will be presented. Particularly, the cutting-edge method to deal with short-term time series data will be focused on.Finally, the advantages as well as the remaining problems in this field are discussed. 展开更多
关键词 nonlinear system prediction causality inference time series data
原文传递
Imprecise Probability Method with the Power-Normal Model for Accelerated Life Testing
2
作者 YIN Yichao HUANG Hongzhong LIU Zheng 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第6期805-810,共6页
We present a new nonparametric predictive inference(NPI)method using a power-normal model for accelerated life testing(ALT).Combined with the accelerating link function and imprecise probability theory,the proposed me... We present a new nonparametric predictive inference(NPI)method using a power-normal model for accelerated life testing(ALT).Combined with the accelerating link function and imprecise probability theory,the proposed method is a feasible way to predict the life of the product using ALT failure data.To validate the method,we run a series of simulations and conduct accelerated life tests with real products.The NPI lower and upper survival functions show the robustness of our method for life prediction.This is a continuous research,and some progresses have been made by updating the link function between different stress levels.We also explain how to renew and apply our model.Moreover,discussions have been made about the performance. 展开更多
关键词 accelerated life testing(ALT) power-normal model lower and upper survival functions nonparametric predictive inference(NPI) imprecise probability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部