In this paper, we use the car-following model with the anticipation effect of the potential lane-changing probability (Acta Mech. Sin. 24 (2008) 399) to investigate the effects of the potential lane-changing proba...In this paper, we use the car-following model with the anticipation effect of the potential lane-changing probability (Acta Mech. Sin. 24 (2008) 399) to investigate the effects of the potential lane-changing probability on uniform flow. The analytical and numerical results show that the potential lane-changing probability can enhance the speed and flow of uniform flow and that their increments are related to the density.展开更多
Due to the heterogeneity of the structure on a scale-free network, making the betweennesses of all nodes become homogeneous by reassigning the weights of nodes or edges is very difficult. In order to take advantage of...Due to the heterogeneity of the structure on a scale-free network, making the betweennesses of all nodes become homogeneous by reassigning the weights of nodes or edges is very difficult. In order to take advantage of the important effect of high degree nodes on the shortest path communication and preferentially deliver packets by them to increase the probability to destination, an adaptive local routing strategy on a scale-free network is proposed, in which the node adjusts the forwarding probability with the dynamical traffic load (packet queue length) and the degree distribution of neighbouring nodes. The critical queue length of a node is set to be proportional to its degree, and the node with high degree has a larger critical queue length to store and forward more packets. When the queue length of a high degree node is shorter than its critical queue length, it has a higher probability to forward packets. After higher degree nodes are saturated (whose queue lengths are longer than their critical queue lengths), more packets will be delivered by the lower degree nodes around them. The adaptive local routing strategy increases the probability of a packet finding its destination quickly, and improves the transmission capacity on the scale-free network by reducing routing hops. The simulation results show that the transmission capacity of the adaptive local routing strategy is larger than that of three previous local routing strategies.展开更多
基金Supported by the Program for New Century Excellent Talents in University under Grant No.NCET-08-0038the National Natural Science Foundation of China under Grant Nos.70701002,70971007,and 70521001 the National Basic Research Program of China under Grant No.2006CB705503
文摘In this paper, we use the car-following model with the anticipation effect of the potential lane-changing probability (Acta Mech. Sin. 24 (2008) 399) to investigate the effects of the potential lane-changing probability on uniform flow. The analytical and numerical results show that the potential lane-changing probability can enhance the speed and flow of uniform flow and that their increments are related to the density.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos. 60872011 and 60502017)the State Key Development Program for Basic Research of China (Grant Nos. 2009CB320504 and 2010CB731800)Program for New Century Excellent Talents in University
文摘Due to the heterogeneity of the structure on a scale-free network, making the betweennesses of all nodes become homogeneous by reassigning the weights of nodes or edges is very difficult. In order to take advantage of the important effect of high degree nodes on the shortest path communication and preferentially deliver packets by them to increase the probability to destination, an adaptive local routing strategy on a scale-free network is proposed, in which the node adjusts the forwarding probability with the dynamical traffic load (packet queue length) and the degree distribution of neighbouring nodes. The critical queue length of a node is set to be proportional to its degree, and the node with high degree has a larger critical queue length to store and forward more packets. When the queue length of a high degree node is shorter than its critical queue length, it has a higher probability to forward packets. After higher degree nodes are saturated (whose queue lengths are longer than their critical queue lengths), more packets will be delivered by the lower degree nodes around them. The adaptive local routing strategy increases the probability of a packet finding its destination quickly, and improves the transmission capacity on the scale-free network by reducing routing hops. The simulation results show that the transmission capacity of the adaptive local routing strategy is larger than that of three previous local routing strategies.