A new concept generalized(h,m)−preinvex function on Yang’s fractal sets is proposed.Some Ostrowski’s type inequalities with two parameters for generalized(h,m)−preinvex function are established,where three local fra...A new concept generalized(h,m)−preinvex function on Yang’s fractal sets is proposed.Some Ostrowski’s type inequalities with two parameters for generalized(h,m)−preinvex function are established,where three local fractional inequalities involving generalized midpoint type,trapezoid type and Simpson type are derived as consequences.Furthermore,as some applications,special means inequalities and numerical quadratures for local fractional integrals are discussed.展开更多
The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function...The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function were introduced, from which the properties of the corresponding contingent cone and the alpha-order contingent derivative were studied. Finally, the optimality Kuhn-Tucker condition and the Wolfe duality theorem for the alpha-order S-preinvex set-valued optimization were presented with the help of the alpha-order contingent derivative.展开更多
By using cone-directed contingent derivatives, the unified necessary and sufficient optimality conditions are given for weakly and strongly minimal elements respectively in generalized preinvex set-valued optimization.
Structural characteristics and absolute continuities of monotone set-valued function defined by set- valued Choquet integral are discussed. Similar to the single-valued monotone set function, several important structu...Structural characteristics and absolute continuities of monotone set-valued function defined by set- valued Choquet integral are discussed. Similar to the single-valued monotone set function, several important structural characteristics of set-valued function are defined and have been proven the same as those in the original set functions, such as null-additivity, weakly null-additivity, order continuity, strong order continuity and property(S). A counterexample shows that order continuity and strong order continuity of the original set functions are no longer kept in a monotone set-valued function when Choquet integrably bounded assumption is abandoned. Four kinds of absolute continuities are defined for set-valued function, and all been proven valid with respect to the original set functions.展开更多
One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deri...One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deriving the error bounds which provide an estimated distance between a specific point and the exact solution of variational inequality problem. In this paper, we follow a similar approach for set-valued vector quasi variational inequality problems and define the gap functions based on scalarization scheme as well as the one with no scalar parameter. The error bounds results are obtained under fixed point symmetric and locally α-Holder assumptions on the set-valued map describing the domain of solution space of a set-valued vector quasi variational inequality problem.展开更多
We show that the lateral regularizations of the generator of any uniformly bounded set-valued composition Nemytskij operator acting in the spaces of functions of bounded variation in the sense of Riesz, with nonempty ...We show that the lateral regularizations of the generator of any uniformly bounded set-valued composition Nemytskij operator acting in the spaces of functions of bounded variation in the sense of Riesz, with nonempty bounded closed and convex values, are an affine function.展开更多
This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary an...This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary and sufficient optimality conditions are established for Henig proper and strong minimal solutions respectively in generalized preinvex vector optimization problems.展开更多
Operator h-preinvex functions are introduced and a refinement of HermiteHadamard type inequalities for such functions is established. Results proved in this paper are more general and some known results are special ca...Operator h-preinvex functions are introduced and a refinement of HermiteHadamard type inequalities for such functions is established. Results proved in this paper are more general and some known results are special cases.展开更多
In this paper, we give a survey on the PhD thesis of the first author. There theexistence and ergodicity on invariant measures of set-valued mappings are discused.
In this paper, we study Henig efficiency in vector optimization with nearly cone-subconvexlike set-valued function. The existence of Henig efficient point is proved and characterization of Henig efficiency is establis...In this paper, we study Henig efficiency in vector optimization with nearly cone-subconvexlike set-valued function. The existence of Henig efficient point is proved and characterization of Henig efficiency is established using the method of Lagrangian multiplier. As an interesting application of the results in this paper, we establish a Lagrange multiplier theorem for super efficiency in vector optimization with nearly conesubconvexlike set-valued function.展开更多
This paper deals with approximate weak minimal solutions of set-valued optimization problems under vector and set optimality criteria.The relationships between various concepts of approximate weak minimal solutions ar...This paper deals with approximate weak minimal solutions of set-valued optimization problems under vector and set optimality criteria.The relationships between various concepts of approximate weak minimal solutions are investigated.Some topological properties and existence theorems of these solutions are given.It is shown that for set-valued optimization problems with upper(outer)cone-semicontinuous objective values or closed objective maps the approximate weak minimal and strictly approximate lower weak minimal solution sets are closed.By using the polar cone and two scalarization processes,some necessary and sufficient optimality conditions in the sense of vector and set criteria are provided.展开更多
The paper is a contribution to the problem of approximating random set with values in a separable Banach space. This class of set-valued function is widely used in many areas.We investigate the properties of p-bounded...The paper is a contribution to the problem of approximating random set with values in a separable Banach space. This class of set-valued function is widely used in many areas.We investigate the properties of p-bounded integrable random set. Based on this we endow it with △p metric which can be viewed as a integral type hausdorff metric and present some approximation theorem of a class of convolution operators with respect to △p metric. Moreover we also can establish analogous theorem for other integral type operator in △p space.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.11801342)the Natural Science Foundation of Shaanxi Province(Grant No.2023-JC-YB-043).
文摘A new concept generalized(h,m)−preinvex function on Yang’s fractal sets is proposed.Some Ostrowski’s type inequalities with two parameters for generalized(h,m)−preinvex function are established,where three local fractional inequalities involving generalized midpoint type,trapezoid type and Simpson type are derived as consequences.Furthermore,as some applications,special means inequalities and numerical quadratures for local fractional integrals are discussed.
基金Project supported by the National Natural Science Foundation of China (No. 10371024) the Natural Science Foundation of Zhejiang Province (No.Y604003)
文摘The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function were introduced, from which the properties of the corresponding contingent cone and the alpha-order contingent derivative were studied. Finally, the optimality Kuhn-Tucker condition and the Wolfe duality theorem for the alpha-order S-preinvex set-valued optimization were presented with the help of the alpha-order contingent derivative.
基金Supported by the National Natural Science Foundation of China (10571035)
文摘By using cone-directed contingent derivatives, the unified necessary and sufficient optimality conditions are given for weakly and strongly minimal elements respectively in generalized preinvex set-valued optimization.
基金Sponsored by the National Natural Science Foundation of China (70771010)
文摘Structural characteristics and absolute continuities of monotone set-valued function defined by set- valued Choquet integral are discussed. Similar to the single-valued monotone set function, several important structural characteristics of set-valued function are defined and have been proven the same as those in the original set functions, such as null-additivity, weakly null-additivity, order continuity, strong order continuity and property(S). A counterexample shows that order continuity and strong order continuity of the original set functions are no longer kept in a monotone set-valued function when Choquet integrably bounded assumption is abandoned. Four kinds of absolute continuities are defined for set-valued function, and all been proven valid with respect to the original set functions.
文摘One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deriving the error bounds which provide an estimated distance between a specific point and the exact solution of variational inequality problem. In this paper, we follow a similar approach for set-valued vector quasi variational inequality problems and define the gap functions based on scalarization scheme as well as the one with no scalar parameter. The error bounds results are obtained under fixed point symmetric and locally α-Holder assumptions on the set-valued map describing the domain of solution space of a set-valued vector quasi variational inequality problem.
文摘We show that the lateral regularizations of the generator of any uniformly bounded set-valued composition Nemytskij operator acting in the spaces of functions of bounded variation in the sense of Riesz, with nonempty bounded closed and convex values, are an affine function.
文摘This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary and sufficient optimality conditions are established for Henig proper and strong minimal solutions respectively in generalized preinvex vector optimization problems.
基金The NSF(11801342) of Chinathe Foundation(18JK0116) of Shaanxi Educational Committee
文摘Operator h-preinvex functions are introduced and a refinement of HermiteHadamard type inequalities for such functions is established. Results proved in this paper are more general and some known results are special cases.
文摘In this paper, we give a survey on the PhD thesis of the first author. There theexistence and ergodicity on invariant measures of set-valued mappings are discused.
基金the Natural Science Foundation of Zhejiang Province,China(M103089)
文摘In this paper, we study Henig efficiency in vector optimization with nearly cone-subconvexlike set-valued function. The existence of Henig efficient point is proved and characterization of Henig efficiency is established using the method of Lagrangian multiplier. As an interesting application of the results in this paper, we establish a Lagrange multiplier theorem for super efficiency in vector optimization with nearly conesubconvexlike set-valued function.
基金Institute for Research in Fundamental Sciences(No.96580048).
文摘This paper deals with approximate weak minimal solutions of set-valued optimization problems under vector and set optimality criteria.The relationships between various concepts of approximate weak minimal solutions are investigated.Some topological properties and existence theorems of these solutions are given.It is shown that for set-valued optimization problems with upper(outer)cone-semicontinuous objective values or closed objective maps the approximate weak minimal and strictly approximate lower weak minimal solution sets are closed.By using the polar cone and two scalarization processes,some necessary and sufficient optimality conditions in the sense of vector and set criteria are provided.
基金the the Morningside Center of Mathematics of the Chinese Academy of Sciencesthe Program of "One Hundred Distinguished Chinese Scientists" of the Chinese Academy of Sciences.
文摘The paper is a contribution to the problem of approximating random set with values in a separable Banach space. This class of set-valued function is widely used in many areas.We investigate the properties of p-bounded integrable random set. Based on this we endow it with △p metric which can be viewed as a integral type hausdorff metric and present some approximation theorem of a class of convolution operators with respect to △p metric. Moreover we also can establish analogous theorem for other integral type operator in △p space.
基金This research was partially supported by the National Natural Science Foundation of China(Grant No.10171118,10471159)the key project of the Chinese Ministry of Education,Supported by Program for New Century Excellent Talents in University.
基金This research was partially supported by the National Natural Science Foundation of China (Grant No.10171118)Education Committee project Research Foundation of Chongqing (Grant No. 030801)National Natural Science Foundation of Chongqing (Grant No. 8904)