期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Constitutive Model for Hot Pressing of Powders
1
作者 Rongde GE (Dept. of Nonferrous Metallurgy, Central South University of Technology, Changsha, 410083, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第5期374-380,共7页
Based on an assumption that the effective pressure in hot pressing related to the applied pressure varies with the relative density of the compact in a power law form. a three-dimensional viscoelastic model that depic... Based on an assumption that the effective pressure in hot pressing related to the applied pressure varies with the relative density of the compact in a power law form. a three-dimensional viscoelastic model that depicts the viscoelastic detormation behaviour of powder compacts in hot pressing has been developed. It has been shown by the experimental data that the proposed model in which the parameters are determined by means of nonlinear regression analysis can be used to describe the density-time relationship for the hot pressing of pure magnesium oxide and atomized iron powders and to estimate the end-point relative density of the compact. 展开更多
关键词 A Constitutive Model for Hot Pressing of powders
下载PDF
Effect of Nano-sized B4C Addition on the Mechanical Properties of ZA27 Composites
2
作者 R.Dalmis H.Cuvalci +1 位作者 A.Canakci O.Guler 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期747-752,共6页
In order to understand the influence of nano-sized B4C additive on ZA27 alloy, mechanical and physical properties of ZA27-B4C nanocomposites were investigated in terms of B4C content. While physical properties were de... In order to understand the influence of nano-sized B4C additive on ZA27 alloy, mechanical and physical properties of ZA27-B4C nanocomposites were investigated in terms of B4C content. While physical properties were determined in terms of microstructural studies, density and porosity tests, mechanical properties were determined in terms of ultimate tensile strength(UTS) and hardness experiments. Morphological and microstructural studies were carried out with scanning electron microscopy(SEM). The experimental results indicate that nano-sized B4C can be used to enhance the mechanical properties of ZA27 alloy effectively. The highest mechanical performance can be obtained at ZA27-0.5% B4C(in weight) nanocomposite with values of tensile strength(247 MPa) and hardness(141,18 BH) and low partial porosity(0.5%). After a pick point, increasing B4C ratio may cause the formation of agglomeration in grain boundaries, that's why density, tensile strength, and hardness values are declined. 展开更多
关键词 metal matrix nanocomposite ZA27 alloy hot pressing powder metallurgy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部