期刊文献+
共找到1,516篇文章
< 1 2 76 >
每页显示 20 50 100
Nonholonomic Theory of Principal-direction Orthonormal Basis for a Layer of Surfaces
1
作者 LI Jiayang XIE Xilin 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期415-437,442,共24页
In order to carry out tensor analysis in a neighborhood of a reference surface,the principal-direction orthogonal basis accompanying with Lame s coefficients or general curvilinear coordinate systems are widely used.A... In order to carry out tensor analysis in a neighborhood of a reference surface,the principal-direction orthogonal basis accompanying with Lame s coefficients or general curvilinear coordinate systems are widely used.A novel kind of field theory termed as the nonholonomic theory of the Principal-Direction Orthonormal Basis(PDOB)is presented systematically in the present paper,in which the formal Christoffel symbols are related directly to the principal and geodesic curvatures with respect to the principal directions of the surface.Furthermore,a systematic and simple way to determine the curvatures of the surface are presented with some examples.It provides a way to recognize qualitatively the bending property of a surface. 展开更多
关键词 nonholonomic theory principal-direction orthonormal basis principal curvature geodesic curvature
下载PDF
3D DEM simulation of hard rock fracture in deep tunnel excavation induced by changes in principal stress magnitude and orientation 被引量:1
2
作者 Weiqi Wang Xia-Ting Feng +2 位作者 Qihu Wang Rui Kong Chengxiang Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3870-3884,共15页
To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ... To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress. 展开更多
关键词 Deep hard rock tunnel Three-dimensional(3D)discrete element model(DEM) Magnitude and orientation of principal stress Transient unloading Fracture mechanism
下载PDF
Using deep neural networks coupled with principal component analysis for ore production forecasting at open-pit mines
3
作者 Chengkai Fan Na Zhang +1 位作者 Bei Jiang Wei Victor Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期727-740,共14页
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe... Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines. 展开更多
关键词 Oil sands production Open-pit mining Deep learning principal component analysis(PCA) Artificial neural network Mining engineering
下载PDF
A Hybrid Optimization Approach of Single Point Incremental Sheet Forming of AISI 316L Stainless Steel Using Grey Relation Analysis Coupled with Principal Component Analysiss
4
作者 A Visagan P Ganesh 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期160-166,共7页
We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use... We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response. 展开更多
关键词 single point incremental forming AISI 316L taguchi grey relation analysis principal component analysis surface roughness scanning electron microscopy
原文传递
Mechanism of principal stress rotation and deformation failure behavior induced by excavation in roadways
5
作者 Jianping Zuo Zongyu Ma +2 位作者 Chengyi Xu Shuaifei Zhan Haiyan Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4605-4624,共20页
The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidati... The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidating the mechanism of roadway failure.This study aimed to examine the spatial relationship between roadways and stress fields.The law of stress axis rotation under three-dimensional(3D)stress has been extensively studied.A stress model of roadways in the spatial stress field was established,and the far-field stress state at different spatial positions of the roadways was analyzed.A mechanical model of roadways under a 3D stress state was established using far-field stress solutions as boundary conditions.The distribution of principal stressesσ1,σ2 andσ3 around the roadways and the variation of the stress principal axis were solved.It was found that the stability boundary of the stress principal axis exhibits hysteresis when compared with that of the principal stress magnitudes.A numerical analysis model for spatial roadways was established to validate the distribution of principal stress and the mechanism of principal axis rotation.Research has demonstrated that the stress axis undergoes varying degrees of spatial rotation in different orientations and radial depths.Based on the distribution of principal stress and the rotation law of the stress principal axis,the entire evolution mechanism of the two stress adjustments to form the final failure form after roadway excavation has been revealed.The on-site detection results also corroborate the findings presented in this paper.The results provide a basis for the analysis of the failure mechanism under a 3D stress state. 展开更多
关键词 Roadway stress field principal stress rotation Roadway failure mechanism Failure characteristics
下载PDF
Rock strength weakening subject to principal stress rotation:Experimental and numerical investigations
6
作者 Huandui Liu Guibin Wang +2 位作者 Chunhe Yang Junyue Zhang Shiwan Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3544-3557,共14页
During the construction and operation of gas storage reservoirs,changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress,potentially leading to failure in... During the construction and operation of gas storage reservoirs,changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress,potentially leading to failure in the surrounding rock.However,the weakening of strength due to pure stress rotation has not yet been investigated.Based on fracture mechanics,an enhanced Mohr-Coulomb strength criterion considering stress rotation is proposed and verified with experimental and numerical simulations.The micro-damage state and the evolution of the rock under the pure stress-rotation condition are analyzed.The findings indicate that differential stress exceeding the crack initiation stress is a prerequisite for stress rotation to promote the development of rock damage.As the differential stress increases,stress rotation is more likely to induce rock damage,leading to a transition from brittle to plastic failure,characterized by wider fractures and a more complex fracture network.Overall,a negative exponential relationship exists between the stress rotation angle required for rock failure and the differential stress.The feasibility of applying the enhanced criterion to practical engineering is discussed using monitoring data obtained from a mine-by tunnel.This study introduces new concepts for understanding the damage evolution of the surrounding rock under complex stress paths and offers a new theoretical basis for predicting the damage of gas storage reservoirs. 展开更多
关键词 principal stress rotation(PSR) Fracture mechanics Hollow cylinder torsional apparatus for rock (HCAR) Particle flow method Rock strength
下载PDF
A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals
7
作者 Shuai Chen Yinwei Ma +5 位作者 Zhongshu Wang Zongmei Xu Song Zhang Jianle Li Hao Xu Zhanjun Wu 《Structural Durability & Health Monitoring》 EI 2024年第2期125-141,共17页
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt... The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state. 展开更多
关键词 Structural health monitoring distributed opticalfiber sensor damage identification honeycomb sandwich panel principal component analysis
下载PDF
Principal Equatorial Null Geodesic Congruences in the Kerr Metric, and Their Quantum Propagators
8
作者 Josué G. Mateos Trujillo Miguel Socolovsky 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期906-917,共12页
Using the Raychaudhuri equation, we associate quantum probability amplitudes (propagators) to equatorial principal ingoing and outgoing null geodesic congruences in the Kerr metric. The expansion scalars diverge at th... Using the Raychaudhuri equation, we associate quantum probability amplitudes (propagators) to equatorial principal ingoing and outgoing null geodesic congruences in the Kerr metric. The expansion scalars diverge at the ring singularity;however, the propagators remain finite, which is an indication that at the quantum level singularities might disappear or, at least, become softened. 展开更多
关键词 Kerr Metric principal Null Geodesics PROPAGATORS
下载PDF
Comparative Analysis of Differences among Northern,Jiangnan,and Lingnan Classical Private Gardens Using Principal Component Cluster Method
9
作者 Lijuan Sun Hui Wang 《Journal of Architectural Research and Development》 2024年第5期20-29,共10页
This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among ... This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among classical private gardens in the Northern,Jiangnan,and Lingnan regions.The study examines nine classical private gardens from Northern China,Jiangnan,and Lingnan by utilizing the advanced tool of principal component cluster analysis.Based on literature analysis and field research,273 variables were selected for principal component analysis,from which four components with higher contribution rates were chosen for further study.Subsequently,we employed clustering analysis techniques to compare the differences among the three types of gardens.The results reveal that the first principal component effectively highlights the differences between Jiangnan and Lingnan private gardens.The second principal component serves as the key to defining the types of Northern private gardens and distinguishing them from the other two types,and the third principal component indicates that Lingnan private gardens can be categorized into two distinct types as well. 展开更多
关键词 Classical gardens Private gardens DIFFERENCES principal component analysis Cluster analysis
下载PDF
Comparative assessment of the frying efficiency of standard and low linolenic rapeseed oils: Principal Component Analysis (PCA)
10
作者 Ming-Ming Hu Chuan-Qi Zhang Xin-Yu Wu 《Food and Health》 2024年第4期1-9,共9页
In this research,the performance of regular rapeseed oil(RSO)and modified low-linolenic rapeseed oil(LLRO)during frying was assessed using a frying procedure that commonly found in fast-food restaurants.Key physicoche... In this research,the performance of regular rapeseed oil(RSO)and modified low-linolenic rapeseed oil(LLRO)during frying was assessed using a frying procedure that commonly found in fast-food restaurants.Key physicochemical attributes of these oils were investigated.RSO and LLRO differed for initial linolenic acid(12.21%vs.2.59%),linoleic acid(19.15%vs.24.73%).After 6 successive days frying period of French fries,the ratio of linoleic acid to palmitic acid dropped by 54.49%in RSO,higher than that in LLRO(51.54%).The increment in total oxidation value for LLRO(40.46 unit)was observed to be significantly lower than those of RSO(42.58 unit).The changes in carbonyl group value and iodine value throughout the frying trial were also lower in LLRO compared to RSO.The formation rate in total polar compounds for LLRO was 1.08%per frying day,lower than that of RSO(1.31%).In addition,the formation in color component and degradation in tocopherols were proportional to the frying time for two frying oils.Besides,a longer induction period was also observed in LLRO(8.87 h)compared to RSO(7.68 h)after frying period.Overall,LLRO exhibited the better frying stability,which was confirmed by principal component analysis(PCA). 展开更多
关键词 FRYING rapeseed oil frying oil frying stability principal component analysis
下载PDF
Robust Principal Component Analysis Integrating Sparse and Low-Rank Priors
11
作者 Wei Zhai Fanlong Zhang 《Journal of Computer and Communications》 2024年第4期1-13,共13页
Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Anal... Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements. 展开更多
关键词 Robust principal Component Analysis Sparse Matrix Low-Rank Matrix Hyperspectral Image
下载PDF
Principals’and Teachers’Awareness,Knowledge,and Differentiation of Privatization-A Secondary Publication
12
作者 Masaaki Katsuno 《Journal of Contemporary Educational Research》 2024年第2期183-186,共4页
Based on the keynote report by Professor Martin Thrupp,this paper discusses the hollowing out of education provision by the state and the permeation of managerialism.It was pointed out that principals and boards of tr... Based on the keynote report by Professor Martin Thrupp,this paper discusses the hollowing out of education provision by the state and the permeation of managerialism.It was pointed out that principals and boards of trustees in socioeconomically advantaged areas may not be willing to share their benefits with schools in less advantaged areas.The new liberal policies have hollowed out state provision of education,so the education system has come to rely heavily on private actors.This paper also presents the current stage of privatization in Japan and the principals’and teachers’perceptions of privatization. 展开更多
关键词 PRIVATIZATION Education principals and teachers
下载PDF
Experimental study on failure characteristics of single-sided unloading rock under different intermediate principal stress conditions 被引量:9
13
作者 Chongyan Liu Guangming Zhao +4 位作者 Wensong Xu Xiangrui Meng Zhixi Liu Xiang Cheng Gang Lin 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期275-287,共13页
Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial... Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial conditions.The strength and failure characteristics were studied with micro-camera and acoustic emission(AE)monitoring.Furthermore,the choice of test path and the effect ofσ_(2)on fracture of unloading rock were discussed.Results show that the increasedσ_(2)can strengthen the stability of single-sided unloading rock.After unloading,the rock’s free surface underwent five phases,namely,inoculation,particle ejection,buckling rupture,stable failure,and unstable rockburst phases.Moreover,atσ_(2)≤30 MPa,the b value shows the following variation tendency:rising,dropping,significant fluctuation,and dropping,with dispersed damages signal.Atσ_(2)≥40 MPa,the tendency shows:a rise,a decrease,a slight fluctuation,and final drop,with concentrated damages signal.After unloading,AE energy is mainly concentrated in the micro-energy range.With the increasedσ_(2),the micro-energy ratio rises.In contrast,low,medium and large energy ratios drop gradually.The increased tensile fractures and decreased shear fractures indicate that the failure mode of the unloading rock gradually changes from tensile-shear mode to tensile-split one.The fractional dimension of the rock fragments first increases and then decreases with an inflection point at 20 MPa.The distribution of SIF on the planes changes asσ_(2)increases,resulting in strengthening and then weakening of the rock bearing capacity. 展开更多
关键词 Single-sided unloading Acoustic emission True triaxial Intermediate principal stress Stress intensity factor
下载PDF
Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network 被引量:6
14
作者 Zicheng Xin Jiangshan Zhang +2 位作者 Yu Jin Jin Zheng Qing Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期335-344,共10页
The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal compon... The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal component analysis(PCA)and deep neural network(DNN).The PCA was used to eliminate collinearity and reduce the dimension of the input variables,and then the data processed by PCA were used to establish the DNN model.The prediction hit ratios for the Si element yield in the error ranges of±1%,±3%,and±5%are 54.0%,93.8%,and98.8%,respectively,whereas those of the Mn element yield in the error ranges of±1%,±2%,and±3%are 77.0%,96.3%,and 99.5%,respectively,in the PCA-DNN model.The results demonstrate that the PCA-DNN model performs better than the known models,such as the reference heat method,multiple linear regression,modified backpropagation,and DNN model.Meanwhile,the accurate prediction of the alloying element yield can greatly contribute to realizing a“narrow window”control of composition in molten steel.The construction of the prediction model for the element yield can also provide a reference for the development of an alloying control model in LF intelligent refining in the modern iron and steel industry. 展开更多
关键词 ladle furnace element yield principal component analysis deep neural network statistical evaluation
下载PDF
Implications for identification of principal stress directions from acoustic emission characteristics of granite under biaxial compression experiments 被引量:5
15
作者 Longjun Dong Yongchao Chen +2 位作者 Daoyuan Sun Yihan Zhang Sijia Deng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期852-863,共12页
The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side le... The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side length with different intermediate principal stress gradients in combination with acoustic emission(AE)technique.Results show that the fracture characteristics of granite samples change from‘sudden and aggregated’to‘continuous and dispersed’with the increase of the intermediate principal stress.The effect of increasing intermediate principal stress on AE amplitude is not significant,but it increases the proportions of high-frequency AE signals and shear cracks,which in turn increases the possibility of unstable rock failure.The difference of stress in different directions causes the anisotropy of rock fracture and thus leads to the obvious anisotropic characteristics of wave velocity variations.The anisotropy of wave velocity variations with stress difference is probable to identify the principal stress directions.The AE characteristics and the anisotropy of wave velocity variations of granite under two-dimensional stress are not only beneficial complements for rock fracture characteristic and principal stress direction identification,but also can provide a new analysis method for stability monitoring in practical rock engineering. 展开更多
关键词 Two-dimensional stress Fracture characteristics Acoustic emission(AE) Wave velocity principal stress direction
下载PDF
A blast furnace fault monitoring algorithm with low false alarm rate:Ensemble of greedy dynamic principal component analysis-Gaussian mixture model 被引量:1
16
作者 Xiongzhuo Zhu Dali Gao +1 位作者 Chong Yang Chunjie Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期151-161,共11页
The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring f... The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring false alarms. To address the above problem, an ensemble of greedy dynamic principal component analysis-Gaussian mixture model(EGDPCA-GMM) is proposed in this paper. First, PCA-GMM is introduced to deal with the collinearity and the non-Gaussian distribution of blast furnace data.Second, in order to explain the dynamics of data, the greedy algorithm is used to determine the extended variables and their corresponding time lags, so as to avoid introducing unnecessary noise. Then the bagging ensemble is adopted to cooperate with greedy extension to eliminate the randomness brought by the greedy algorithm and further reduce the false alarm rate(FAR) of monitoring results. Finally, the algorithm is applied to the blast furnace of a large iron and steel group in South China to verify performance.Compared with the basic algorithms, the proposed method achieves lowest FAR, while keeping missed alarm rate(MAR) remain stable. 展开更多
关键词 Chemical processes principal component analysis Gaussian mixture model Process monitoring ENSEMBLE Process control
下载PDF
TOC estimation from logging data using principal component analysis 被引量:2
17
作者 Yaxiong Zhang Gang Wang +3 位作者 Xindong Wang Haitao Fan Bo Shen Ke Sun 《Energy Geoscience》 2023年第4期1-8,共8页
Total organic carbon(TOC)content is one of the most important parameters for characterizing the quality of source rocks and assessing the hydrocarbon-generating potential of shales.The Lucaogou Formation shale reservo... Total organic carbon(TOC)content is one of the most important parameters for characterizing the quality of source rocks and assessing the hydrocarbon-generating potential of shales.The Lucaogou Formation shale reservoirs in the Jimusaer Sag,Junggar Basin,NW China,is characterized by extremely complex lithology and a wide variety of mineral compositions with source rocks mainly consisting of carbonaceous mudstone and dolomitic mudstone.The logging responses of organic matter in the shale reservoirs is quite different from those in conventional reservoirs.Analyses show that the traditional△logR method is not suitable for evaluating the TOC content in the study area.Analysis of the sensitivity characteristics of TOC content to well logs reveals that the TOC content has good correlation with the separation degree of porosity logs.After a dimension reduction processing by the principal component analysis technology,the principal components are determined through correlation analysis of porosity logs.The results show that the TOC values obtained by the new method are in good agreement with that measured by core analysis.The average absolute error of the new method is only 0.555,much less when compared with 1.222 of using traditional△logR method.The proposed method can be used to produce more accurate TOC estimates,thus providing a reliable basis for source rock mapping. 展开更多
关键词 Total organic carbon principal component analysis Separation degree Source rocks Shale oil
下载PDF
Mantle sources of Cenozoic volcanoes around the South China Sea revealed by geochemical and isotopic data using the principal component analysis
18
作者 Shuangshuang CHEN Zewei WANG +1 位作者 Rui GAO Yongzhang ZHOU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期562-574,共13页
Principal component analysis(PCA)was employed to determine the implications of geochemical and isotopic data from Cenozoic volcanic activities in the Southeast Asian region,including China(South China Sea(SCS),Hainan ... Principal component analysis(PCA)was employed to determine the implications of geochemical and isotopic data from Cenozoic volcanic activities in the Southeast Asian region,including China(South China Sea(SCS),Hainan Island,Fujian-Zhejiang coast,Taiwan Island),and parts of Vietnam and Thailand.We analyzed 15 trace element indicators and 5 isotopic indicators for 623 volcanic rock samples collected from the study region.Two principal components(PCs)were extracted by PCA based on the trace elements and Sr-Nd-Pb isotopic ratios,which probably indicate an enriched oceanic island basalt-type mantle plume and a depleted mid-ocean ridge basalt-type spreading ridge.The results show that the influence of the Hainan mantle plume on younger volcanic activities(<13 Ma)is stronger than that on older ones(>13 Ma)at the same location in the Southeast Asian region.PCA was employed to verify the mantle-plume-ridge interaction model of volcanic activities beneath the expansion center of SCS and refute the hypothesis that the tension of SCS is triggered by the Hainan plume.This study reveals the efficiency and applicability of PCA in discussing mantle sources of volcanic activities;thus,PCA is a suitable research method for analyzing geochemical data. 展开更多
关键词 volcanic rocks geochemical indicators mantle source principal component analysis South China Sea
下载PDF
Integrated classification method of tight sandstone reservoir based on principal component analysise simulated annealing genetic algorithmefuzzy cluster means
19
作者 Bo-Han Wu Ran-Hong Xie +3 位作者 Li-Zhi Xiao Jiang-Feng Guo Guo-Wen Jin Jian-Wei Fu 《Petroleum Science》 SCIE EI CSCD 2023年第5期2747-2758,共12页
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig... In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method. 展开更多
关键词 Tight sandstone Integrated reservoir classification principal component analysis Simulated annealing genetic algorithm Fuzzy cluster means
下载PDF
Wireless Sensor Network-based Detection of Poisonous Gases Using Principal Component Analysis
20
作者 N.Dharini Jeevaa Katiravan S.M.Udhaya Sankar 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期249-264,共16页
This work utilizes a statistical approach of Principal Component Ana-lysis(PCA)towards the detection of Methane(CH_(4))-Carbon Monoxide(CO)Poi-soning occurring in coal mines,forestfires,drainage systems etc.where the ... This work utilizes a statistical approach of Principal Component Ana-lysis(PCA)towards the detection of Methane(CH_(4))-Carbon Monoxide(CO)Poi-soning occurring in coal mines,forestfires,drainage systems etc.where the CH_(4) and CO emissions are very high in closed buildings or confined spaces during oxi-dation processes.Both methane and carbon monoxide are highly toxic,colorless and odorless gases.Both of the gases have their own toxic levels to be detected.But during their combined presence,the toxicity of the either one goes unidentified may be due to their low levels which may lead to an explosion.By using PCA,the correlation of CO and CH_(4) data is carried out and by identifying the areas of high correlation(along the principal component axis)the explosion suppression action can be triggered earlier thus avoiding adverse effects of massive explosions.Wire-less Sensor Network is deployed and simulations are carried with heterogeneous sensors(Carbon Monoxide and Methane sensors)in NS-2 Mannasim framework.The rise in the value of CO even when CH_(4) is below the toxic level may become hazardous to the people around.Thus our proposed methodology will detect the combined presence of both the gases(CH_(4) and CO)and provide an early warning in order to avoid any human losses or toxic effects. 展开更多
关键词 Wireless sensor network principal component analysis carbon monoxide-methane poisoning confined spaces
下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部