Suppose R is a principal ideal ring, R^* is a multiplicative group which is composed of all reversible elements in R, and Mn(R), GL(n,R), SL(n,R) are denoted by,Mn(R)={A=(aij)n×n|aij∈R,i,j=1,2…,n},G...Suppose R is a principal ideal ring, R^* is a multiplicative group which is composed of all reversible elements in R, and Mn(R), GL(n,R), SL(n,R) are denoted by,Mn(R)={A=(aij)n×n|aij∈R,i,j=1,2…,n},GL(n,R)={g|g∈Mn(R),det g∈R^*},SL(n,R)={g∈GL(n,R)|det g=1},SL(n,R)≤G≤GL(n,R)(n≥3),respectively,then basing on these facts, this paper mainly focus on discussing all extended groups of Gr={(O D^A B)∈G|A∈GL(r,R),(1≤r〈n)}in G when R is a principal ideal ring.展开更多
Abstract The Iwasava decomposition is proved for the Steinberg groups of types 2 A 2l?1, 2 D l , 2 E 6, 3 D 4 over the field of fractions of a principal ideal ring. By using this decomposition, it is described that su...Abstract The Iwasava decomposition is proved for the Steinberg groups of types 2 A 2l?1, 2 D l , 2 E 6, 3 D 4 over the field of fractions of a principal ideal ring. By using this decomposition, it is described that subgroups exist between the Steinberg groups over the rings D and K under some restrictions on the ring D.展开更多
By using the results about polynomial matrix in the system and control theory. this paper gives some discussions about the algebraic properties of polynomial,matrices. The obtained main results include that the,ring o...By using the results about polynomial matrix in the system and control theory. this paper gives some discussions about the algebraic properties of polynomial,matrices. The obtained main results include that the,ring of rr x n polynomial matrices is a principal ideal and principal one-sided ideal ring.展开更多
Let H be a finite-dimensional pointed Hopf algebra of rank one over an algebraically closed field of characteristic zero.In this paper we show that any finitedimensional indecomposable H-module is generated by one ele...Let H be a finite-dimensional pointed Hopf algebra of rank one over an algebraically closed field of characteristic zero.In this paper we show that any finitedimensional indecomposable H-module is generated by one element.In particular,any indecomposable submodule of H under the adjoint action is generated by a special element of H.Using this result,we show that the Hopf algebra H is a principal ideal ring,i.e.,any two-sided ideal of H is generated by one element.As an application,we give explicitly the generators of ideals,primitive ideals,maximal ideals and completely prime ideals of the Taft algebras.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China(10771093)
文摘Suppose R is a principal ideal ring, R^* is a multiplicative group which is composed of all reversible elements in R, and Mn(R), GL(n,R), SL(n,R) are denoted by,Mn(R)={A=(aij)n×n|aij∈R,i,j=1,2…,n},GL(n,R)={g|g∈Mn(R),det g∈R^*},SL(n,R)={g∈GL(n,R)|det g=1},SL(n,R)≤G≤GL(n,R)(n≥3),respectively,then basing on these facts, this paper mainly focus on discussing all extended groups of Gr={(O D^A B)∈G|A∈GL(r,R),(1≤r〈n)}in G when R is a principal ideal ring.
文摘Abstract The Iwasava decomposition is proved for the Steinberg groups of types 2 A 2l?1, 2 D l , 2 E 6, 3 D 4 over the field of fractions of a principal ideal ring. By using this decomposition, it is described that subgroups exist between the Steinberg groups over the rings D and K under some restrictions on the ring D.
文摘By using the results about polynomial matrix in the system and control theory. this paper gives some discussions about the algebraic properties of polynomial,matrices. The obtained main results include that the,ring of rr x n polynomial matrices is a principal ideal and principal one-sided ideal ring.
基金supported by the National Natural Science Foundation of China(Grant No.11871063)supported by the Qing Lan project.
文摘Let H be a finite-dimensional pointed Hopf algebra of rank one over an algebraically closed field of characteristic zero.In this paper we show that any finitedimensional indecomposable H-module is generated by one element.In particular,any indecomposable submodule of H under the adjoint action is generated by a special element of H.Using this result,we show that the Hopf algebra H is a principal ideal ring,i.e.,any two-sided ideal of H is generated by one element.As an application,we give explicitly the generators of ideals,primitive ideals,maximal ideals and completely prime ideals of the Taft algebras.