期刊文献+
共找到2,439篇文章
< 1 2 122 >
每页显示 20 50 100
Droplet morphology analysis of drop-on-demand inkjet printing
1
作者 Hu-xiang Xia Takechi Kensuke +2 位作者 Tajima Shin Kawamura Yoshiumi Qing-yan Xu 《China Foundry》 SCIE EI CAS CSCD 2024年第1期20-28,共9页
As an accurate 2D/3D fabrication tool,inkjet printing technology has great potential in preparation of micro electronic devices.The morphology of droplets produced by the inkjet printer has a great impact on the accur... As an accurate 2D/3D fabrication tool,inkjet printing technology has great potential in preparation of micro electronic devices.The morphology of droplets produced by the inkjet printer has a great impact on the accuracy of deposition.In this study,the drop-on-demand(DoD)inkjet simulation model was established,and the accuracy of the simulation model was verified by corresponding experiments.The simulation result shows that the velocity of the droplet front and tail,as well as the time to disconnect from the nozzle is mainly affected by density(ρ),viscosity(μ)and surface tension(σ)of droplets.When the liquid filament is about to disconnect from the nozzle,the filament length and filament front velocity are found to have a linear correlation withσ/ρμand ln(ρ/(μσ1/2)). 展开更多
关键词 microdevice fabrication inkjet printing droplet morphology modeling and simulation
下载PDF
Effect of navigation endoscopy combined with threedimensional printing technology in the treatment of orbital blowout fractures
2
作者 Jin-Hai Yu Yao-Hua Wang +3 位作者 Qi-Hua Xu Chao Xiong An-An Wang Hong-Fei Liao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第3期570-576,共7页
●AIM:To explore the combined application of surgical navigation nasal endoscopy(NNE)and three-dimensional printing technology(3DPT)for the adjunctive treatment of orbital blowout fractures(OBF).●METHODS:Retrospectiv... ●AIM:To explore the combined application of surgical navigation nasal endoscopy(NNE)and three-dimensional printing technology(3DPT)for the adjunctive treatment of orbital blowout fractures(OBF).●METHODS:Retrospective analysis was conducted on the data of patients with OBF who underwent surgical treatment at the Affiliated Eye Hospital of Nanchang University between July 2012 and November 2022.The control group consisted of patients who received traditional surgical treatment(n=43),while the new surgical group(n=52)consisted of patients who received NNE with 3DPT.The difference in therapeutic effects between the two groups was evaluated by comparing the duration of the operation,best corrected visual acuity(BCVA),enophthalmos difference,recovery rate of eye movement disorder,recovery rate of diplopia,and incidence of postoperative complications.●RESULTS:The study included 95 cases(95 eyes),with 63 men and 32 women.The patients’age ranged from 5 to 67y(35.21±15.75y).The new surgical group and the control group exhibited no statistically significant differences in the duration of the operation,BCVA and enophthalmos difference.The recovery rates of diplopia in the new surgical group were significantly higher than those in the control group at 1mo[OR=0.03,95%CI(0.01–0.15),P<0.0000]and 3mo[OR=0.11,95%CI(0.03–0.36),P<0.0000]postoperation.Additionally,the recovery rates of eye movement disorders at 1 and 3mo after surgery were OR=0.08,95%CI(0.03–0.24),P<0.0000;and OR=0.01,95%CI(0.00–0.18),P<0.0000.The incidence of postoperative complications was lower in the new surgical group compared to the control group[OR=4.86,95%CI(0.95–24.78),P<0.05].●CONCLUSION:The combination of NNE and 3DPT can shorten the recovery time of diplopia and eye movement disorder in patients with OBF. 展开更多
关键词 orbital blowout fracture three-dimensional printing ENDOSCOPY surgical navigation
原文传递
Cookie Baking Process Optimization and Quality Analysis Based on Food 3D Printing
3
作者 Liu Chenghai Li Jingyi +2 位作者 Wu Chunsheng Zhao Xinglong Zheng Xianzhe 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期61-73,共13页
In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the in... In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology. 展开更多
关键词 food 3D printing baking process COOKIE quality analysis optimization of process parameter
下载PDF
Significance of“Printing English”in the Curriculum Setting of Business English Majors(Publishing Direction)
4
作者 LIN Xuecai 《Sino-US English Teaching》 2024年第4期177-181,共5页
With the development of the global economy and the quick growth of international exchanges,Business English major plays an increasingly important role in higher education.The training goal of Business English major(pu... With the development of the global economy and the quick growth of international exchanges,Business English major plays an increasingly important role in higher education.The training goal of Business English major(publishing direction)has gradually shifted from the improvement of studentslanguage abilities to the cultivation of more specialized business knowledge and publishing skills.As an important course for Business English majors(publishing direction),Printing English is of great significance for cultivating studentsprofessional quality,professional competitiveness,career development,and practical ability.From the perspective of curriculum setting,it is necessary to re-understand the importance of Printing English in the curriculum setting of Business English major(publishing direction),and put forward corresponding teaching methods and strategies. 展开更多
关键词 Business English major printing English curriculum setting teaching strategies
下载PDF
Exploring Effective Ways of Green Printing to Reduce Harmful Volatile Organic Compounds Emissions
5
作者 Yizhe Li Yao Wang 《Proceedings of Business and Economic Studies》 2024年第1期199-203,共5页
This paper delves into the transformative shift in the printing industry from traditional petroleum-based inks to sustainable alternatives,focusing on soy ink.Initially,it examines the environmental and health hazards... This paper delves into the transformative shift in the printing industry from traditional petroleum-based inks to sustainable alternatives,focusing on soy ink.Initially,it examines the environmental and health hazards associated with conventional printing,highlighting the detrimental impact of volatile organic compounds(VOCs)and toxic substances in inks.The emergence of soy ink as an eco-friendly solution is then explored.Derived from soybeans,soy ink significantly reduces the release of harmful VOCs and enhances the recyclability of printed materials.The paper discusses not only the environmental benefits of soy ink but also its operational and economic advantages,such as improved deinking capabilities and waste reduction.A notable development in soy ink technology is the use of soy methyl ester,which addresses the challenges of slow drying and penetration associated with traditional inks.The paper concludes by emphasizing the need for continued innovation in sustainable practices within the printing industry,positioning soy ink as a key player in aligning economic goals with environmental responsibility.The shift to soy-based inks exemplifies a broader trend towards sustainability,pivotal for the future health of the planet. 展开更多
关键词 Soy ink Sustainable printing Environmental impact Soy methyl ester Green innovation
下载PDF
Simultaneous multi-material embedded printing for 3D heterogeneous structures
6
作者 Ziqi Gao Jun Yin +4 位作者 Peng Liu Qi Li Runan Zhang Huayong Yang Hongzhao Zhou 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期485-498,共14页
In order to mimic the natural heterogeneity of native tissue and provide a better microenvironment for cell culturing,multi-material bioprinting has become a common solution to construct tissue models in vitro.With th... In order to mimic the natural heterogeneity of native tissue and provide a better microenvironment for cell culturing,multi-material bioprinting has become a common solution to construct tissue models in vitro.With the embedded printing method,complex 3D structure can be printed using soft biomaterials with reasonable shape fidelity.However,the current sequential multi-material embedded printing method faces a major challenge,which is the inevitable trade-off between the printed structural integrity and printing precision.Here,we propose a simultaneous multi-material embedded printing method.With this method,we can easily print firmly attached and high-precision multilayer structures.With multiple individually controlled nozzles,different biomaterials can be precisely deposited into a single crevasse,minimizing uncontrolled squeezing and guarantees no contamination of embedding medium within the structure.We analyse the dynamics of the extruded bioink in the embedding medium both analytically and experimentally,and quantitatively evaluate the effects of printing parameters including printing speed and rheology of embedding medium,on the 3D morphology of the printed filament.We demonstrate the printing of double-layer thin-walled structures,each layer less than 200μm,as well as intestine and liver models with 5%gelatin methacryloyl that are crosslinked and extracted from the embedding medium without significant impairment or delamination.The peeling test further proves that the proposed method offers better structural integrity than conventional sequential printing methods.The proposed simultaneous multi-material embedded printing method can serve as a powerful tool to support the complex heterogeneous structure fabrication and open unique prospects for personalized medicine. 展开更多
关键词 embedded printing multi-material printing PRINTABILITY soft materials heterogeneous structures
下载PDF
4D printing: interdisciplinary integration of smart materials, structural design,and new functionality
7
作者 Zhiyang Lyu Jinlan Wang Yunfei Chen 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期342-361,共20页
Four-dimensional printing allows for the transformation capabilities of 3D-printed architectures over time,altering their shape,properties,or function when exposed to external stimuli.This interdisciplinary technology... Four-dimensional printing allows for the transformation capabilities of 3D-printed architectures over time,altering their shape,properties,or function when exposed to external stimuli.This interdisciplinary technology endows the 3D architectures with unique functionalities,which has generated excitement in diverse research fields,such as soft robotics,biomimetics,biomedical devices,and sensors.Understanding the selection of the material,architectural designs,and employed stimuli is crucial to unlocking the potential of smart customization with 4D printing.This review summarizes recent significant developments in 4D printing and establishes links between smart materials,3D printing techniques,programmable structures,diversiform stimulus,and new functionalities for multidisciplinary applications.We start by introducing the advanced features of 4D printing and the key technological roadmap for its implementation.We then place considerable emphasis on printable smart materials and structural designs,as well as general approaches to designing programmable structures.We also review stimulus designs in smart materials and their associated stimulus-responsive mechanisms.Finally,we discuss new functionalities of 4D printing for potential applications and further development directions. 展开更多
关键词 4D printing 3D printing smart materials programmable structure STIMULUS
下载PDF
Effect of printing parameters on properties of 3D printing sand samples
8
作者 De-quan Shi Yin-yu Hou Gui-li Gao 《China Foundry》 SCIE EI CAS CSCD 2023年第6期553-562,共10页
Three-dimensional sand printing(3DSP)is widely applied in sand mold fabrication.In this study,the effects of printing parameters including the resolution of printehead holes,activator content,layer thickness,and recoa... Three-dimensional sand printing(3DSP)is widely applied in sand mold fabrication.In this study,the effects of printing parameters including the resolution of printehead holes,activator content,layer thickness,and recoating speed on the tensile and bending strengths,gas evolution,and loss-on-ignition(LOI)of 3DSP samples were investigated by changing single parameter,and the dimension deviation was also measured.As the resolution increases,the tensile strength,bending strength,gas evolution,LOI,and deviations at X-and Y-axis directions decrease gradually while the deviation at Z-axis direction firstly increases and then deceases.The gas evolution and LOI drops by 13.02%and 8.13%respectively,but the strength only reduces by 2.2% when the resolution increases from 0.08 mm to 0.09 mm.The strengths of samples rise at first and then decline while the gas evolution and LOI rise gradually with the increasing activator content or recoating speed.The activator content is found to have little effect on the gas evolution as the activator increases from 0.14%to 0.34%,the gas evolution is increased by 7.3%which is far less than the LOI increment of 24.1%.As the layer thickness increases,the tensile and bending strengths firstly rise and then drop while gas evolution and LOI descend.Under the optimal printing parameters of 0.09 mm resolution,0.18%activator,-10.28 mm layer thickness and 160 mm·s^(-1) recoating speed,the tensile strengths for X-sample and Y-sample are 1.48 MPa and 1.37 MPa,the bending strengths are 1.84 MPa and 1.75 MPa,the gas evolution and LOI are-19.62 mL·g^(-1) and 1.92%,respectively. 展开更多
关键词 three-dimensional sand printing printing parameters mechanical properties LOI
下载PDF
3D bioprinting of complex biological structures with tunable elastic modulus and porosity using freeform reversible embedding of suspended hydrogels
9
作者 Zhuang Chen Chuanzhen Huang +5 位作者 Hanlian Liu Xu Han Zhichao Wang Shuying Li Jun Huang Zhen Wang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第5期550-562,共13页
Three-dimensional(3D)bioprinting has been used widely for the construction of hard tissues such as bone and cartilage.However,constructing soft tissues with complex structures remains a challenge.In this study,complex... Three-dimensional(3D)bioprinting has been used widely for the construction of hard tissues such as bone and cartilage.However,constructing soft tissues with complex structures remains a challenge.In this study,complex structures characterized by both tunable elastic modulus and porosity were printed using freeform reversible embedding of suspended hydrogels(FRESHs)printing methods.A mixture of alginate and gelatin was used as the main functional component of the bioink.Rheological analysis showed that this bioink possesses shear thinning and shear recovery properties,supporting both cryogenic and FRESH printing methods.Potential printing capabilities and limitations of cryogenic and FRESH printing were then analyzed by printability tests.A series of complex structures were printed by FRESH printing methods which could not be realized using conventional approaches.Mechanical tests and scanning electron microscopy analysis showed that the printed structure is of excellent flexibility and could be applied in various conditions by adjusting its mechanical modulus and porosity.L929 fibroblast cells maintained cell viability in cell-laden-printed structures,and the addition of collagen further improved the hydrogels’biocompatibility.Overall,all results provided useful insight into the building of human soft tissue organ blocks. 展开更多
关键词 Bioink Freeform reversible embedding of suspended hydrogels(FRESHs)printing 3D extrusion cell-laden printing Tissue engineering Tunable elastic modulus and porosity
下载PDF
Application and prospects of 3D printing in physical experiments of rock mass mechanics and engineering:materials,methodologies and models 被引量:2
10
作者 Qingjia Niu Lishuai Jiang +3 位作者 Chunang Li Yang Zhao Qingbiao Wang Anying Yuan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期1-17,共17页
The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or ro... The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or rock-like samples with defects.In recent years,3D printing technology has become a promising tool in the feld of rock mass mechanics and engineering.This study frst reviews and discusses the research status of traditional test methods in rock mass mechanics tests of making rock samples with defects.Then,based on the comprehensive analysis of previous research,the application of 3D printing technology in rock mass mechanics is expounded from the following three aspects.The frst is the printing material.Although there are many materials for 3D printing,it has been found that 3D printing materials that can be used for rock mass mechanics research are very limited.After research,we summarize and evaluate printing material that can be used for rock mass mechanics studies.The second is the printing methodology,which mainly introduces the current application forms of 3D printing technology in rock mass mechanics.This includes printed precise casting molds and one-time printed samples.The last one is the printing model,which includes small-scale samples for mechanical tests and large-scale physical models.Then,the benefts and drawbacks of using 3D printing samples in mechanical tests and the validity of their simulation of real rock are discussed.Compared with traditional rock samples collected in nature or synthetic rock-like samples,the samples made by 3D printing technology have unique advantages,such as higher test repeatability,visualization of rock internal structure and stress distribution.There is thus great potential for the use of 3D printing in the feld of rock mass mechanics.However,3D printing materials also have shortcomings,such as insufcient material strength and accuracy at this stage.Finally,the application prospect of 3D printing technology in rock mass mechanics research is proposed. 展开更多
关键词 3D printing Rock mass mechanics Prefabricated cracks Rock-like material Fractured rock mass
下载PDF
Design and Research of Form Controlled Planar Folding Mechanism based on 4D Printing Technology
11
作者 Wencai Zhang Zhenghao Ge Duanling Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期281-293,共13页
The use of non-smart materials in structural components and kinematic pairs allows for flexible assembly in practical applications and is promising for aerospace applications.However,this approach can result in a comp... The use of non-smart materials in structural components and kinematic pairs allows for flexible assembly in practical applications and is promising for aerospace applications.However,this approach can result in a complex structure and excessive kinematic pairs,which limits its potential applications due to the difficulty in controlling and actuating the mechanism.While smart materials have been integrated into certain mechanisms,such integration is generally considered a unique design for specific cases and lacks universality.Therefore,organically combining universal mechanism design with smart materials and 4D printing technology,innovating mechanism types,and systematically exploring the interplay between structural design and morphing control remains an open research area.In this work,a novel form-controlled planar folding mechanism is proposed,which seamlessly integrates the control and actuation system with the structural components and kinematic pairs based on the combination of universal mechanism design with smart materials and 4D printing technology,while achieving self-controlled dimensional ratio adjustment under a predetermined thermal excitation.The design characteristics of the mechanism are analyzed,and the required structural design parameters for the preprogrammed design are derived using a kinematic model.Using smart materials and 4D printing technology,folding programs based on material properties and control programs based on manufacturing parameters are encoded into the form-controlled rod to achieve the preprogrammed design of the mechanism.Finally,two sets of prototype mechanisms are printed to validate the feasibility of the design,the effectiveness of the morphing control programs,and the accuracy of the theoretical analysis.This mechanism not only promotes innovation in mechanism design methods but also shows exceptional promise in satellite calibration devices and spacecraft walking systems. 展开更多
关键词 Form-controlled mechanism Self-folding Smart materials 4D printing Morphing control
下载PDF
Effect of surface retaining elements on rock stability:laboratory investigation with sand powder 3D printing
12
作者 Hao Feng Lishuai Jiang +3 位作者 Qingwei Wang Peng Tang Atsushi Sainoki Hani S.Mitri 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期305-324,共20页
This study aims to investigate the benefcial efects of surface retaining elements (SREs) on the mechanical behaviors of bolted rock and roadway stability. 3D printing (3DP) technology is utilized to create rock analog... This study aims to investigate the benefcial efects of surface retaining elements (SREs) on the mechanical behaviors of bolted rock and roadway stability. 3D printing (3DP) technology is utilized to create rock analogue prismatic specimens for conducting this investigation. Uniaxial compression tests with acoustic emission (AE) and digital image correlation techniques have been conducted on 3DP specimens bolted with diferent SREs. The results demonstrate that the strength and modulus of elasticity of the bolted specimens show a positive correlation with the area of the SRE;the AE characteristics of the bolted specimens are higher than those of the unbolted specimen, but they decrease with an increase in SRE area, thus further improving the integrity of the bolted specimens. The reinforcement efect of SREs on the surrounding rock of roadways is further analyzed using numerical modelling and feld test. The results provide a better understanding of the role of SREs in rock bolting and the optimization of rock bolting design. Furthermore, they verify the feasibility of 3DP for rock analogues in rock mechanics tests. 展开更多
关键词 Roadway stability Surface retaining element Sand-powder 3D printing Rock bolting Numerical modelling
下载PDF
Investigation on the Mechanical Properties and Shape Memory Effect of Landing Buffer Structure Based on NiTi Alloy Printing
13
作者 Zhenglei Yu Renlong Xin +5 位作者 Zezhou Xu Yining Zhu Xiaolong Zhang Shijie Hao Zhihui Zhang Ping Liang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期397-406,共10页
With the deepening of human research on deep space exploration,our research on the soft landing methods of landers has gradually deepened.Adding a buffer and energy-absorbing structure to the leg structure of the land... With the deepening of human research on deep space exploration,our research on the soft landing methods of landers has gradually deepened.Adding a buffer and energy-absorbing structure to the leg structure of the lander has become an effective design solution.Based on the energy-absorbing structure of the leg of the interstellar lander,this paper studies the appearance characteristics of the predatory feet of the Odontodactylus scyllarus.The predatory feet of the Odontodactylus scyllarus can not only hit the prey highly when preying,but also can easily withstand the huge counter-impact force.The predatory feet structure of the Odontodactylus scyllarus,like a symmetrical cone,shows excellent rigidity and energy absorption capacity.Inspired by this discovery,we used SLM technology to design and manufacture two nickel-titanium samples,which respectively show high elasticity,shape memory,and get better energy absorption capacity.This research provides an effective way to design and manufacture high-mechanical energy-absorbing buffer structures using bionic 3D printing technology and nickel-titanium alloys. 展开更多
关键词 Bionic protective structure Odontodactylus scyllarus NiTi alloy 3D printing Numerical simulation RECOVERABILITY
下载PDF
A Generalized Polymer Precursor Ink Design for 3D Printing of Functional Metal Oxides
14
作者 Hehao Chen Jizhe Wang +7 位作者 Siying Peng Dongna Liu Wei Yan Xinggang Shang Boyu Zhang Yuan Yao Yue Hui Nanjia Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期433-448,共16页
Three-dimensional-structured metal oxides have myriad applications for optoelectronic devices.Comparing to conventional lithography-based manufacturing methods which face significant challenges for 3D device architect... Three-dimensional-structured metal oxides have myriad applications for optoelectronic devices.Comparing to conventional lithography-based manufacturing methods which face significant challenges for 3D device architectures,additive manufacturing approaches such as direct ink writing offer convenient,on-demand manufacturing of 3D oxides with high resolutions down to sub-micrometer scales.However,the lack of a universal ink design strategy greatly limits the choices of printable oxides.Here,a universal,facile synthetic strategy is developed for direct ink writable polymer precursor inks based on metal-polymer coordination effect.Specifically,polyethyleneimine functionalized by ethylenediaminetetraacetic acid is employed as the polymer matrix for adsorbing targeted metal ions.Next,glucose is introduced as a crosslinker for endowing the polymer precursor inks with a thermosetting property required for 3D printing via the Maillard reaction.For demonstrations,binary(i.e.,ZnO,CuO,In_(2)O_(3),Ga_(2)O_(3),TiO_(2),and Y_(2)O_(3)) and ternary metal oxides(i.e.,BaTiO_(3) and SrTiO_(3)) are printed into 3D architectures with sub-micrometer resolution by extruding the inks through ultrafine nozzles.Upon thermal crosslinking and pyrolysis,the 3D microarchitectures with woodpile geometries exhibit strong light-matter coupling in the mid-infrared region.The design strategy for printable inks opens a new pathway toward 3D-printed optoelectronic devices based on functional oxides. 展开更多
关键词 3D printing Maillard reaction Polymer-assisted deposition Metal oxide Photonic crystal
下载PDF
Recent advances in meniscus-on-demand three-dimensional micro-and nano-printing for electronics and photonics
15
作者 Shiqi Hu Xiao Huan +3 位作者 Yu Liu Sixi Cao Zhuoran Wang Ji Tae Kim 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期302-317,共16页
The continual demand for modern optoelectronics with a high integration degree and customized functions has increased requirements for nanofabrication methods with high resolution,freeform,and mask-free.Meniscus-on-de... The continual demand for modern optoelectronics with a high integration degree and customized functions has increased requirements for nanofabrication methods with high resolution,freeform,and mask-free.Meniscus-on-demand three-dimensional(3D)printing is a high-resolution additive manufacturing technique that exploits the ink meniscus formed on a printer nozzle and is suitable for the fabrication of micro/nanoscale 3D architectures.This method can be used for solution-processed 3D patterning of materials at a resolution of up to100 nm,which provides an excellent platform for fundamental scientific studies and various practical applications.This review presents recent advances in meniscus-on-demand 3D printing,together with historical perspectives and theoretical background on meniscus formation and stability.Moreover,this review highlights the capabilities of meniscus-on-demand 3D printing in terms of printable materials and potential areas of application,such as electronics and photonics. 展开更多
关键词 3D printing ink meniscus functional materials ELECTRONICS PHOTONICS
下载PDF
Anisotropic creep behavior of soft-hard interbedded rock masses based on 3D printing and digital imaging correlation technology
16
作者 TIAN Yun WU Fa-quan +5 位作者 TIAN Hong-ming LI Zhe SHU Xiao-yun HE Lin-kai HUANG Man CHEN Wei-zhong 《Journal of Mountain Science》 SCIE CSCD 2023年第4期1147-1158,共12页
Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent... Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent properties of natural layered rock masses.In this paper,soft-hard interbedded rock masses with different dip angles were prepared based on 3D printing(3DP)sand core technology.Uniaxial compression creep tests were conducted to investigate its anisotropic creep behavior based on digital imaging correlation(DIC)technology.The results show that the anisotropic creep behavior of the 3DP soft-hard interbedded rock mass is mainly affected by the dip angles of the weak interlayer when the stress is at low levels.As the stress level increases,the effect of creep stress on its creep anisotropy increases significantly,and the dip angle is no longer the main factor.The minimum value of the long-term strength and creep failure strength always appears in the weak interlayer within 30°–60°,which explains why the failure of the layered rock mass is controlled by the weak interlayer and generally emerges at 45°.The tests results are verified by comparing with theoretical and other published studies.The feasibility of the 3DP soft-hard interbedded rock mass provides broad prospects and application values for 3DP technology in future experimental research. 展开更多
关键词 3D printing Soft-hard interbedded rock mass Digital imaging correlation technology Weak interlayer Anisotropic creep
原文传递
3D printing critical materials for rechargeable batteries: from materials, design and optimization strategies to applications
17
作者 Yongbiao Mu Youqi Chu +6 位作者 Lyuming Pan Buke Wu Lingfeng Zou Jiafeng He Meisheng Han Tianshou Zhao Lin Zeng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期215-245,共31页
Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nano... Three-dimensional(3D)printing,an additive manufacturing technique,is widely employed for the fabrication of various electrochemical energy storage devices(EESDs),such as batteries and supercapacitors,ranging from nanoscale to macroscale.This technique offers excellent manufacturing flexibility,geometric designability,cost-effectiveness,and eco-friendliness.Recent studies have focused on the utilization of 3D-printed critical materials for EESDs,which have demonstrated remarkable electrochemical performances,including high energy densities and rate capabilities,attributed to improved ion/electron transport abilities and fast kinetics.However,there is a lack of comprehensive reviews summarizing and discussing the recent advancements in the structural design and application of 3D-printed critical materials for EESDs,particularly rechargeable batteries.In this review,we primarily concentrate on the current progress in 3D printing(3DP)critical materials for emerging batteries.We commence by outlining the key characteristics of major 3DP methods employed for fabricating EESDs,encompassing design principles,materials selection,and optimization strategies.Subsequently,we summarize the recent advancements in 3D-printed critical materials(anode,cathode,electrolyte,separator,and current collector)for secondary batteries,including conventional Li-ion(LIBs),Na-ion(SIBs),K-ion(KIBs)batteries,as well as Li/Na/K/Zn metal batteries,Zn-air batteries,and Ni–Fe batteries.Within these sections,we discuss the 3DP precursor,design principles of 3D structures,and working mechanisms of the electrodes.Finally,we address the major challenges and potential applications in the development of 3D-printed critical materials for rechargeable batteries. 展开更多
关键词 additive manufacturing 3D printing rechargeable batteries electrochemical energy storage devices lithium-ion battery
下载PDF
Effect of sintering temperature on microstructure and properties of 3D printing polysilazane reinforced Al_(2)O_(3)core
18
作者 Wen-jun Dong Qiao-lei Li +5 位作者 Tian-ci Chen Ming-ke Zou Jing-jing Liang Li-rong Liu Hui Mei Jin-guo Li 《China Foundry》 SCIE CAS CSCD 2023年第5期387-394,共8页
Ceramic cores are the key intermediate components of hollow blades for aero-engine.Conventional processes,such as hot-press molding and gel film casting,face difficulties in fabricating complex-structured ceramic core... Ceramic cores are the key intermediate components of hollow blades for aero-engine.Conventional processes,such as hot-press molding and gel film casting,face difficulties in fabricating complex-structured ceramic cores due to the complexity of moulds and long process cycles.Stereolithography 3D printing provides a new idea for the fabrication of complex-structured ceramic cores.The effect of sintering temperature on open porosity,bulk density,weight loss rate,shrinkage rate,flexural strength and microstructure of the Al_(2)O_(3)-based ceramic core doped with 10vol.%polysilazane(PSZ)was studied.The sintering mechanism of PSZ-reinforced ceramic cores was analyzed.Results show that the optimum sintering temperature of PSZ-reinforced ceramic cores is 1,450°C.At this temperature,the open porosity of the ceramic core is 36.60%,bulk density is 2.33 g·cm^(-3),weight loss rate is 22.11%,shrinkage rate along the X,Y,Z directions is 5.72%,5.01%,9.61%,respectively;the flexural strength is 28.794 MPa at 25°C and 13.649 MPa at 1,500°C.Properties of 3D printing PSZ-reinforced ceramic cores can meet the casting requirement of superalloy hollow blades,which is expected to promote the industrial application of 3D printing complex structure ceramic cores. 展开更多
关键词 investment casting ceramic core 3D printing sintering temperature flexural strength
下载PDF
3D printing of functional bioengineered constructs for neural regeneration: a review
19
作者 Hui Zhu Cong Yao +6 位作者 Boyuan Wei Chenyu Xu Xinxin Huang Yan Liu Jiankang He Jianning Zhang Dichen Li 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期87-118,共32页
Three-dimensional(3D)printing technology has opened a new paradigm to controllably and reproducibly fabricate bioengineered neural constructs for potential applications in repairing injured nervous tissues or producin... Three-dimensional(3D)printing technology has opened a new paradigm to controllably and reproducibly fabricate bioengineered neural constructs for potential applications in repairing injured nervous tissues or producing in vitro nervous tissue models.However,the complexity of nervous tissues poses great challenges to 3D-printed bioengineered analogues,which should possess diverse architectural/chemical/electrical functionalities to resemble the native growth microenvironments for functional neural regeneration.In this work,we provide a state-of-the-art review of the latest development of 3D printing for bioengineered neural constructs.Various 3D printing techniques for neural tissue-engineered scaffolds or living cell-laden constructs are summarized and compared in terms of their unique advantages.We highlight the advanced strategies by integrating topographical,biochemical and electroactive cues inside 3D-printed neural constructs to replicate in vivo-like microenvironment for functional neural regeneration.The typical applications of 3D-printed bioengineered constructs for in vivo repair of injured nervous tissues,bio-electronics interfacing with native nervous system,neural-on-chips as well as brain-like tissue models are demonstrated.The challenges and future outlook associated with 3D printing for functional neural constructs in various categories are discussed. 展开更多
关键词 3D printing bioengineered neural constructs neural regeneration nerve tissue engineering nervous tissue models
下载PDF
Advances in 3D printing scaffolds for peripheral nerve and spinal cord injury repair
20
作者 Juqing Song Baiheng Lv +2 位作者 Wencong Chen Peng Ding Yong He 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期264-300,共37页
Because of the complex nerve anatomy and limited regeneration ability of natural tissue,the current treatment effect for long-distance peripheral nerve regeneration and spinal cord injury(SCI)repair is not satisfactor... Because of the complex nerve anatomy and limited regeneration ability of natural tissue,the current treatment effect for long-distance peripheral nerve regeneration and spinal cord injury(SCI)repair is not satisfactory.As an alternative method,tissue engineering is a promising method to regenerate peripheral nerve and spinal cord,and can provide structures and functions similar to natural tissues through scaffold materials and seed cells.Recently,the rapid development of 3D printing technology enables researchers to create novel 3D constructs with sophisticated structures and diverse functions to achieve high bionics of structures and functions.In this review,we first outlined the anatomy of peripheral nerve and spinal cord,as well as the current treatment strategies for the peripheral nerve injury and SCI in clinical.After that,the design considerations of peripheral nerve and spinal cord tissue engineering were discussed,and various 3D printing technologies applicable to neural tissue engineering were elaborated,including inkjet,extrusion-based,stereolithography,projection-based,and emerging printing technologies.Finally,we focused on the application of 3D printing technology in peripheral nerve regeneration and spinal cord repair,as well as the challenges and prospects in this research field. 展开更多
关键词 peripheral nerve regeneration spinal cord repair 3D printing construct bionic structure bionic function
下载PDF
上一页 1 2 122 下一页 到第
使用帮助 返回顶部