With the rapid development of information technology and the continuous evolution of personalized ser- vices, huge amounts of data are accumulated by large internet companies in the process of serving users. Moreover,...With the rapid development of information technology and the continuous evolution of personalized ser- vices, huge amounts of data are accumulated by large internet companies in the process of serving users. Moreover, dynamic data interactions increase the intentional/unintentional persistence of private infor- mation in different information systems. However, problems such as the cask principle of preserving pri- vate information among different information systems and the dif culty of tracing the source of privacy violations are becoming increasingly serious. Therefore, existing privacy-preserving schemes cannot pro- vide systematic privacy preservation. In this paper, we examine the links of the information life-cycle, such as information collection, storage, processing, distribution, and destruction. We then propose a the- ory of privacy computing and a key technology system that includes a privacy computing framework, a formal de nition of privacy computing, four principles that should be followed in privacy computing, ffect algorithm design criteria, evaluation of the privacy-preserving effect, and a privacy computing language. Finally, we employ four application scenarios to describe the universal application of privacy computing, and discuss the prospect of future research trends. This work is expected to guide theoretical research on user privacy preservation within open environments.展开更多
Federated learning is a distributed machine learning technique that trains a global model by exchanging model parameters or intermediate results among multiple data sources. Although federated learning achieves physic...Federated learning is a distributed machine learning technique that trains a global model by exchanging model parameters or intermediate results among multiple data sources. Although federated learning achieves physical isolation of data, the local data of federated learning clients are still at risk of leakage under the attack of malicious individuals. For this reason, combining data protection techniques (e.g., differential privacy techniques) with federated learning is a sure way to further improve the data security of federated learning models. In this survey, we review recent advances in the research of differentially-private federated learning models. First, we introduce the workflow of federated learning and the theoretical basis of differential privacy. Then, we review three differentially-private federated learning paradigms: central differential privacy, local differential privacy, and distributed differential privacy. After this, we review the algorithmic optimization and communication cost optimization of federated learning models with differential privacy. Finally, we review the applications of federated learning models with differential privacy in various domains. By systematically summarizing the existing research, we propose future research opportunities.展开更多
The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC...The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC)to gather local data and compute distributed fusion estimates(DFEs).Due to the existence of potential eavesdropper,the data exchanged among sensors,FC and user imperatively require privacy preservation.Hence,we propose a distributed confidentiality fusion structure against eavesdropper by using Paillier homomorphic encryption approach.In this case,FC cannot acquire real values of local state estimates,while it only helps calculate encrypted DFEs.Then,the legitimate user can successfully obtain the true values of DFEs according to the encrypted information and secret keys,which is based on the homomorphism of encryption.Finally,an illustrative example is provided to verify the effectiveness of the proposed methods.展开更多
文摘With the rapid development of information technology and the continuous evolution of personalized ser- vices, huge amounts of data are accumulated by large internet companies in the process of serving users. Moreover, dynamic data interactions increase the intentional/unintentional persistence of private infor- mation in different information systems. However, problems such as the cask principle of preserving pri- vate information among different information systems and the dif culty of tracing the source of privacy violations are becoming increasingly serious. Therefore, existing privacy-preserving schemes cannot pro- vide systematic privacy preservation. In this paper, we examine the links of the information life-cycle, such as information collection, storage, processing, distribution, and destruction. We then propose a the- ory of privacy computing and a key technology system that includes a privacy computing framework, a formal de nition of privacy computing, four principles that should be followed in privacy computing, ffect algorithm design criteria, evaluation of the privacy-preserving effect, and a privacy computing language. Finally, we employ four application scenarios to describe the universal application of privacy computing, and discuss the prospect of future research trends. This work is expected to guide theoretical research on user privacy preservation within open environments.
文摘Federated learning is a distributed machine learning technique that trains a global model by exchanging model parameters or intermediate results among multiple data sources. Although federated learning achieves physical isolation of data, the local data of federated learning clients are still at risk of leakage under the attack of malicious individuals. For this reason, combining data protection techniques (e.g., differential privacy techniques) with federated learning is a sure way to further improve the data security of federated learning models. In this survey, we review recent advances in the research of differentially-private federated learning models. First, we introduce the workflow of federated learning and the theoretical basis of differential privacy. Then, we review three differentially-private federated learning paradigms: central differential privacy, local differential privacy, and distributed differential privacy. After this, we review the algorithmic optimization and communication cost optimization of federated learning models with differential privacy. Finally, we review the applications of federated learning models with differential privacy in various domains. By systematically summarizing the existing research, we propose future research opportunities.
基金supported in part by the National Natural Sci-ence Foundation of China(No.61973277)in part by the Zhejiang Provincial Natural Science Foundation of China(No.LR20F030004)in part by the Major Key Project of PCL(No.PCL2021A09).
文摘The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC)to gather local data and compute distributed fusion estimates(DFEs).Due to the existence of potential eavesdropper,the data exchanged among sensors,FC and user imperatively require privacy preservation.Hence,we propose a distributed confidentiality fusion structure against eavesdropper by using Paillier homomorphic encryption approach.In this case,FC cannot acquire real values of local state estimates,while it only helps calculate encrypted DFEs.Then,the legitimate user can successfully obtain the true values of DFEs according to the encrypted information and secret keys,which is based on the homomorphism of encryption.Finally,an illustrative example is provided to verify the effectiveness of the proposed methods.