The estimation of generalized exponential distribution based on progressive censoring with binomial removals is presented, where the number of units removed at each failure time follows a binomial distribution. Maximu...The estimation of generalized exponential distribution based on progressive censoring with binomial removals is presented, where the number of units removed at each failure time follows a binomial distribution. Maximum likelihood estimators of the parameters and their confidence intervals are derived. The expected time required to complete the life test under this censoring scheme is investigated. Finally, the numerical examples are given to illustrate some theoretical results by means of Monte-Carlo simulation.展开更多
This paper considers the parameters and reliability characteristics estimation problem of the generalized Rayleigh distribution under progressively Type-Ⅱ censoring with random removals,that is,the number of units re...This paper considers the parameters and reliability characteristics estimation problem of the generalized Rayleigh distribution under progressively Type-Ⅱ censoring with random removals,that is,the number of units removed at each failure time follows the binomial distribution.The maximum likelihood estimation and the Bayesian estimation are derived.In the meanwhile,through a great quantity of Monte Carlo simulation experiments we have studied different hyperparameters as well as symmetric and asymmetric loss functions in the Bayesian estimation procedure.A real industrial case is presented to justify and illustrate the proposed methods.We also investigate the expected experimentation time and discuss the influence of the parameters on the termination point to complete the censoring test.展开更多
A new extended exponential lifetime model called Harris extended-exponential(HEE)distribution for data modelling with increasing and decreasing hazard rate shapes has been considered.In the reliability context,researc...A new extended exponential lifetime model called Harris extended-exponential(HEE)distribution for data modelling with increasing and decreasing hazard rate shapes has been considered.In the reliability context,researchers prefer to use censoring plans to collect data in order to achieve a compromise between total test time and/or test sample size.So,this study considers both maximum likelihood and Bayesian estimates of the Harris extended-exponential distribution parameters and some of its reliability indices using a progressive Type-II censoring strategy.Under the premise of independent gamma priors,the Bayesian estimation is created using the squared-error and general entropy loss functions.Due to the challenging form of the joint posterior distribution,to evaluate the Bayes estimates,samples from the full conditional distributions are generated using Markov Chain Monte Carlo techniques.For each unknown parameter,the highest posterior density credible intervals and asymptotic confidence intervals are also determined.Through a simulated study,the usefulness of the various suggested strategies is assessed.The optimal progressive censoring plans are also shown,and various optimality criteria are investigated.Two actual data sets,taken from engineering and veterinary medicine areas,are analyzed to show how the offered point and interval estimators can be used in practice and to verify that the proposed model furnishes a good fit than other lifetimemodels:alpha power exponential,generalized-exponential,Nadarajah-Haghighi,Weibull,Lomax,gamma and exponential distributions.Numerical evaluations revealed that in the presence of progressively Type-II censored data,the Bayes estimation method against the squared-error(symmetric)loss is advised for getting the point and interval estimates of the HEE distribution.展开更多
This article introduces a novel variant of the generalized linear exponential(GLE)distribution,known as the sine generalized linear exponential(SGLE)distribution.The SGLE distribution utilizes the sine transformation ...This article introduces a novel variant of the generalized linear exponential(GLE)distribution,known as the sine generalized linear exponential(SGLE)distribution.The SGLE distribution utilizes the sine transformation to enhance its capabilities.The updated distribution is very adaptable and may be efficiently used in the modeling of survival data and dependability issues.The suggested model incorporates a hazard rate function(HRF)that may display a rising,J-shaped,or bathtub form,depending on its unique characteristics.This model includes many well-known lifespan distributions as separate sub-models.The suggested model is accompanied with a range of statistical features.The model parameters are examined using the techniques of maximum likelihood and Bayesian estimation using progressively censored data.In order to evaluate the effectiveness of these techniques,we provide a set of simulated data for testing purposes.The relevance of the newly presented model is shown via two real-world dataset applications,highlighting its superiority over other respected similar models.展开更多
A novel extended Lindley lifetime model that exhibits unimodal or decreasing density shapes as well as increasing,bathtub or unimodal-then-bathtub failure rates, named the Marshall-Olkin-Lindley (MOL) model is studied...A novel extended Lindley lifetime model that exhibits unimodal or decreasing density shapes as well as increasing,bathtub or unimodal-then-bathtub failure rates, named the Marshall-Olkin-Lindley (MOL) model is studied.In this research, using a progressive Type-II censored, various inferences of the MOL model parameters oflife are introduced. Utilizing the maximum likelihood method as a classical approach, the estimators of themodel parameters and various reliability measures are investigated. Against both symmetric and asymmetric lossfunctions, the Bayesian estimates are obtained using the Markov Chain Monte Carlo (MCMC) technique with theassumption of independent gamma priors. From the Fisher information data and the simulatedMarkovian chains,the approximate asymptotic interval and the highest posterior density interval, respectively, of each unknownparameter are calculated. Via an extensive simulated study, the usefulness of the various suggested strategies isassessedwith respect to some evaluationmetrics such as mean squared errors, mean relative absolute biases, averageconfidence lengths, and coverage percentages. Comparing the Bayesian estimations based on the asymmetric lossfunction to the traditional technique or the symmetric loss function-based Bayesian estimations, the analysisdemonstrates that asymmetric loss function-based Bayesian estimations are preferred. Finally, two data sets,representing vinyl chloride and repairable mechanical equipment items, have been investigated to support theapproaches proposed and show the superiority of the proposed model compared to the other fourteen lifetimemodels.展开更多
This paper considers the Bayesian and expected Bayesian(E-Bayesian) estimations of the parameter and reliability function for competing risk model from Gompertz distribution under Type-I progressively hybrid censori...This paper considers the Bayesian and expected Bayesian(E-Bayesian) estimations of the parameter and reliability function for competing risk model from Gompertz distribution under Type-I progressively hybrid censoring scheme(PHCS). The estimations are obtained based on Gamma conjugate prior for the parameter under squared error(SE) and Linex loss functions. The simulation results are provided for the comparison purpose and one data set is analyzed.展开更多
An inverse problemin practical scientific investigations is the process of computing unknown parameters from a set of observations where the observations are only recorded indirectly,such as monitoring and controlling...An inverse problemin practical scientific investigations is the process of computing unknown parameters from a set of observations where the observations are only recorded indirectly,such as monitoring and controlling quality in industrial process control.Linear regression can be thought of as linear inverse problems.In other words,the procedure of unknown estimation parameters can be expressed as an inverse problem.However,maximum likelihood provides an unstable solution,and the problembecomes more complicated if unknown parameters are estimated from different samples.Hence,researchers search for better estimates.We study two joint censoring schemes for lifetime products in industrial process monitoring.In practice,this type of data can be collected in fields such as the medical industry and industrial engineering.In this study,statistical inference for the Chen lifetime products is considered and analyzed to estimate underlying parameters.Maximum likelihood and Bayes’rule are both studied for model parameters.The asymptotic distribution of maximumlikelihood estimators and the empirical distributions obtained withMarkov chainMonte Carlo algorithms are utilized to build the interval estimators.Theoretical results using tables and figures are adopted through simulation studies and verified in an analysis of the lifetime data.We briefly describe the performance of developed methods.展开更多
In this paper,we propose a new extension of the traditional Rayleigh distribution called the modified Kies Rayleigh distribution.The new distribution contains one scale and one shape parameter and its hazard rate func...In this paper,we propose a new extension of the traditional Rayleigh distribution called the modified Kies Rayleigh distribution.The new distribution contains one scale and one shape parameter and its hazard rate function can be increasing and bathtub-shaped.Some mathematical properties of the new distribution are derived including quantiles and moments.The parameters of modified Kies Rayleigh distribution are estimated based on progressively Type-II censored data.For this purpose,we consider two estimation methods,namely maximum likelihood and maximum product of spacing estimation methods.To compare the efficiency of the proposed estimators,a simulation study is carried out.To show the applicability of the new model as well as the estimation methods,one real data for failure times of software is analyzed.Based on the empirical parts,we can conclude that the proposed model can be considered as a good model in the field of life testing and reliability analysis compared with other competing models.展开更多
Maximum product spacing for stress–strength model based on progressive Type-II hybrid censored samples with different cases has been obtained.This paper deals with estimation of the stress strength reliability model ...Maximum product spacing for stress–strength model based on progressive Type-II hybrid censored samples with different cases has been obtained.This paper deals with estimation of the stress strength reliability model R=P(Y<X)when the stress and strength are two independent exponentiated Gumbel distribution random variables with different shape parameters but having the same scale parameter.The stress–strength reliability model is estimated under progressive Type-II hybrid censoring samples.Two progressive Type-II hybrid censoring schemes were used,Case I:A sample size of stress is the equal sample size of strength,and same time of hybrid censoring,the product of spacing function under progressive Type-II hybrid censoring schemes.Case II:The sample size of stress is a different sample size of strength,in which the life-testing experiment with a progressive censoring scheme is terminated at a random time T 2 e0;1T.The maximum likelihood estimation and maximum product spacing estimation methods under progressive Type-II hybrid censored samples for the stress strength model have been discussed.A comparison study with classical methods as the maximum likelihood estimation method is discussed.Furthermore,to compare the performance of various cases,Markov chain Monte Carlo simulation is conducted by using iterative procedures as Newton Raphson or conjugate-gradient procedures.Finally,two real datasets are analyzed for illustrative purposes,first data for the breaking strengths of jute fiber,and the second data for the waiting times before the service of the customers of two banks.展开更多
In this paper, we construct a Bayesian framework combining Type-Ⅰ progressively hybrid censoring scheme and competing risks which are independently distributed as exponentiated Weibull distribution with one scale par...In this paper, we construct a Bayesian framework combining Type-Ⅰ progressively hybrid censoring scheme and competing risks which are independently distributed as exponentiated Weibull distribution with one scale parameter and two shape parameters. Since there exist unknown hyper-parameters in prior density functions of shape parameters, we consider the hierarchical priors to obtain the individual marginal posterior density functions,Bayesian estimates and highest posterior density credible intervals. As explicit expressions of estimates cannot be obtained, the componentwise updating algorithm of Metropolis-Hastings method is employed to compute the numerical results. Finally, it is concluded that Bayesian estimates have a good performance.展开更多
This paper proposes a simple constant-stress accel- erated life test (ALT) model from Burr type XII distribution when the data are Type-I progressively hybrid censored. The maximum likelihood estimation (MLE) of t...This paper proposes a simple constant-stress accel- erated life test (ALT) model from Burr type XII distribution when the data are Type-I progressively hybrid censored. The maximum likelihood estimation (MLE) of the parameters is obtained through the numerical method for solving the likelihood equations. Approxi- mate confidence interval (CI), based on normal approximation to the asymptotic distribution of MLE and percentile bootstrap Cl is derived. Finally, a numerical example is introduced and then a Monte Carlo simulation study is carried out to illustrate the pro- posed method.展开更多
Inthispaper,theoptimumtestplanandparameterestimationfor3-stepstep-stress accelerated life tests in the presence of modified progressive Type-I censoring are discussed.It is assumed that the lifetime of test units foll...Inthispaper,theoptimumtestplanandparameterestimationfor3-stepstep-stress accelerated life tests in the presence of modified progressive Type-I censoring are discussed.It is assumed that the lifetime of test units follows a Lomax distribution with log of characteristic life being quadratic function of stress level.The maximum likelihood and Bayesian method are used to obtain the point and interval estimators of the model parameters.The Bayes estimates are obtained using Markov chain Monte Carlo simulation based on Gibbs sampling.The optimum plan for 3-step step-stress test under modified progressive Type-I censoring is developed which minimizes the asymptotic variance of the maximum likelihood estimators of log of scale parameter at design stress.Finally,the numerical study with sensitivity analysis is presented to illustrate the proposed study.展开更多
Under Type-Ⅱ progressively hybrid censoring, this paper discusses statistical inference and optimal design on stepstress partially accelerated life test for hybrid system in presence of masked data. It is assumed tha...Under Type-Ⅱ progressively hybrid censoring, this paper discusses statistical inference and optimal design on stepstress partially accelerated life test for hybrid system in presence of masked data. It is assumed that the lifetime of the component in hybrid systems follows independent and identical modified Weibull distributions. The maximum likelihood estimations(MLEs)of the unknown parameters, acceleration factor and reliability indexes are derived by using the Newton-Raphson algorithm. The asymptotic variance-covariance matrix and the approximate confidence intervals are obtained based on normal approximation to the asymptotic distribution of MLEs of model parameters. Moreover,two bootstrap confidence intervals are constructed by using the parametric bootstrap method. The optimal time of changing stress levels is determined under D-optimality and A-optimality criteria.Finally, the Monte Carlo simulation study is carried out to illustrate the proposed procedures.展开更多
The inference for the dependent competing risks model is studied and the dependent structure of failure causes is modeled by a Marshall-Olkin bivariate Rayleigh distribution. Under generalized progressive hybrid censo...The inference for the dependent competing risks model is studied and the dependent structure of failure causes is modeled by a Marshall-Olkin bivariate Rayleigh distribution. Under generalized progressive hybrid censoring(GPHC), maximum likelihood estimates are established and the confidence intervals are constructed based on the asymptotic theory. Bayesian estimates and the highest posterior density credible intervals are obtained by using Gibbs sampling. Simulation and a real life electrical appliances data set are used for practical illustration.展开更多
Accelerated life testing has been widely used in product life testing experiments because it can quickly provide information on the lifetime distributions by testing products or materials at higher than basic conditio...Accelerated life testing has been widely used in product life testing experiments because it can quickly provide information on the lifetime distributions by testing products or materials at higher than basic conditional levels of stress,such as pressure,temperature,vibration,voltage,or load to induce early failures.In this paper,a step stress partially accelerated life test(SSPALT)is regarded under the progressive type-II censored data with random removals.The removals from the test are considered to have the binomial distribution.The life times of the testing items are assumed to follow lengthbiased weighted Lomax distribution.The maximum likelihood method is used for estimating the model parameters of length-biased weighted Lomax.The asymptotic confidence interval estimates of the model parameters are evaluated using the Fisher information matrix.The Bayesian estimators cannot be obtained in the explicit form,so the Markov chain Monte Carlo method is employed to address this problem,which ensures both obtaining the Bayesian estimates as well as constructing the credible interval of the involved parameters.The precision of the Bayesian estimates and the maximum likelihood estimates are compared by simulations.In addition,to compare the performance of the considered confidence intervals for different parameter values and sample sizes.The Bootstrap confidence intervals give more accurate results than the approximate confidence intervals since the lengths of the former are less than the lengths of latter,for different sample sizes,observed failures,and censoring schemes,in most cases.Also,the percentile Bootstrap confidence intervals give more accurate results than Bootstrap-t since the lengths of the former are less than the lengths of latter for different sample sizes,observed failures,and censoring schemes,in most cases.Further performance comparison is conducted by the experiments with real data.展开更多
In this article,we consider the statistical inferences of the unknown parameters of a generalized inverted exponential distribution based on the Type II progressively hybrid censored sample.By applying the expectation...In this article,we consider the statistical inferences of the unknown parameters of a generalized inverted exponential distribution based on the Type II progressively hybrid censored sample.By applying the expectation–maximization(EM)algorithm,the maximum likelihood estimators are developed for estimating the unknown parameters.The observed Fisher information matrix is obtained using the missing information principle,and it can be used for constructing asymptotic con-fidence intervals.By applying the bootstrapping technique,the confidence intervals for the parameters are also derived.Bayesian estimates of the unknown parameters are obtained using the Lindley’s approximation.Monte Carlo simulations are imple-mented and observations are given.Finally,a real data set representing the spread factor of micro-drops is analyzed to illustrative purposes.展开更多
In general,simple subsystems like series or parallel are integrated to produce a complex hybrid system.The reliability of a system is determined by the reliability of its constituent components.It is often extremely d...In general,simple subsystems like series or parallel are integrated to produce a complex hybrid system.The reliability of a system is determined by the reliability of its constituent components.It is often extremely difficult or impossible to get specific information about the component that caused the system to fail.Unknown failure causes are instances in which the actual cause of systemfailure is unknown.On the other side,thanks to current advanced technology based on computers,automation,and simulation,products have become incredibly dependable and trustworthy,and as a result,obtaining failure data for testing such exceptionally reliable items have become a very costly and time-consuming procedure.Therefore,because of its capacity to produce rapid and adequate failure data in a short period of time,accelerated life testing(ALT)is the most utilized approach in the field of product reliability and life testing.Based on progressively hybrid censored(PrHC)data froma three-component parallel series hybrid system that failed to owe to unknown causes,this paper investigates a challenging problem of parameter estimation and reliability assessment under a step stress partially accelerated life-test(SSPALT).Failures of components are considered to follow a power linear hazard rate(PLHR),which can be used when the failure rate displays linear,decreasing,increasing or bathtub failure patterns.The Tempered random variable(TRV)model is considered to reflect the effect of the high stress level used to induce early failure data.The maximum likelihood estimation(MLE)approach is used to estimate the parameters of the PLHR distribution and the acceleration factor.A variance covariance matrix(VCM)is then obtained to construct the approximate confidence intervals(ACIs).In addition,studentized bootstrap confidence intervals(ST-B CIs)are also constructed and compared with ACIs in terms of their respective interval lengths(ILs).Moreover,a simulation study is conducted to demonstrate the performance of the estimation procedures and the methodology discussed in this paper.Finally,real failure data from the air conditioning systems of an airplane is used to illustrate further the performance of the suggested estimation technique.展开更多
The reliability of a system is discussed when the strength of the system and the stress imposed on it are independent and non-identical exponentiated Pareto distributed random variables with progressively censored sch...The reliability of a system is discussed when the strength of the system and the stress imposed on it are independent and non-identical exponentiated Pareto distributed random variables with progressively censored scheme.Different interval estimations are proposed.The interval estimations obtained are exact,approximate and bootstrap confidence intervals.Different methods and the corresponding confidence intervals are compared using Monte-Carlo simulations.Simulation results show that the confidence intervals(CIs)of exact and approximate methods are really better than those of the bootstrap method.展开更多
In this paper,Health-related quality of life has not been adequately measured in bladder cancer.A recently developed reliable and disease-specific quality of life instrument(Bladder Cancer Index,RCI)was used to measur...In this paper,Health-related quality of life has not been adequately measured in bladder cancer.A recently developed reliable and disease-specific quality of life instrument(Bladder Cancer Index,RCI)was used to measure.Progressive type Ⅱ censoring schemes have potential usefulness in practice where budget constraints in place or there is a necessity for the speedy test.To test the process capability,the lifetime performance index Cl is widely recommended for evaluating the performance of the producfs lifetime and evaluating the lifetime performance index GL for the three-parameter Weighted-Lomax distribution(WLx)under progressive type-II censoring sample for a lower specification limit(L).The statistical inference concerning CL is conducted via obtaining the maximum likelihood of Cl on the base of progressive type-II censoring.The asymptotic normal distribution of the MLE of CL and the confidence interval is proposed.Moreover,the hypothesis testing of CL for evaluating the lifetime performance of WLx data is conducted.Also,assuming the conjugate prior distribution and squared error loss function,this study constructs a Bayes estimator of CL.The Bayes estimator of CL is then utilized to develop a credible interval in the condition of known L.Moreover,we propose a Bayesian test to assess the lifetime performance of products.We also propose a Bayesian test to assess the lifetime performance of products.Finally,two examples are given,one of them is considering a real life data of the remission times of bladder cancer patients in endurance lifetime test and the other is a simulated example to illustrate the usage of the proposed procedure.展开更多
In this work,we consider the problem of estimating the parameters and predicting the unobserved or removed ordered data for the progressive type II censored flexible Weibull sample.Frequentist and Bayesian analyses ar...In this work,we consider the problem of estimating the parameters and predicting the unobserved or removed ordered data for the progressive type II censored flexible Weibull sample.Frequentist and Bayesian analyses are adopted for conducting the estimation and prediction problems.The likelihood method as well as the Bayesian sampling techniques is applied for the inference problems.The point predictors and credible intervals of unobserved data based on an informative set of data are computed.Markov ChainMonte Carlo samples are performed to compare the so-obtained methods,and one real data set is analyzed for illustrative purposes.展开更多
基金supported by the National Natural Science Foundation of China(70471057)
文摘The estimation of generalized exponential distribution based on progressive censoring with binomial removals is presented, where the number of units removed at each failure time follows a binomial distribution. Maximum likelihood estimators of the parameters and their confidence intervals are derived. The expected time required to complete the life test under this censoring scheme is investigated. Finally, the numerical examples are given to illustrate some theoretical results by means of Monte-Carlo simulation.
基金supported by the National Statistical Science Research Project of China(2019LZ32)
文摘This paper considers the parameters and reliability characteristics estimation problem of the generalized Rayleigh distribution under progressively Type-Ⅱ censoring with random removals,that is,the number of units removed at each failure time follows the binomial distribution.The maximum likelihood estimation and the Bayesian estimation are derived.In the meanwhile,through a great quantity of Monte Carlo simulation experiments we have studied different hyperparameters as well as symmetric and asymmetric loss functions in the Bayesian estimation procedure.A real industrial case is presented to justify and illustrate the proposed methods.We also investigate the expected experimentation time and discuss the influence of the parameters on the termination point to complete the censoring test.
基金This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R175),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘A new extended exponential lifetime model called Harris extended-exponential(HEE)distribution for data modelling with increasing and decreasing hazard rate shapes has been considered.In the reliability context,researchers prefer to use censoring plans to collect data in order to achieve a compromise between total test time and/or test sample size.So,this study considers both maximum likelihood and Bayesian estimates of the Harris extended-exponential distribution parameters and some of its reliability indices using a progressive Type-II censoring strategy.Under the premise of independent gamma priors,the Bayesian estimation is created using the squared-error and general entropy loss functions.Due to the challenging form of the joint posterior distribution,to evaluate the Bayes estimates,samples from the full conditional distributions are generated using Markov Chain Monte Carlo techniques.For each unknown parameter,the highest posterior density credible intervals and asymptotic confidence intervals are also determined.Through a simulated study,the usefulness of the various suggested strategies is assessed.The optimal progressive censoring plans are also shown,and various optimality criteria are investigated.Two actual data sets,taken from engineering and veterinary medicine areas,are analyzed to show how the offered point and interval estimators can be used in practice and to verify that the proposed model furnishes a good fit than other lifetimemodels:alpha power exponential,generalized-exponential,Nadarajah-Haghighi,Weibull,Lomax,gamma and exponential distributions.Numerical evaluations revealed that in the presence of progressively Type-II censored data,the Bayes estimation method against the squared-error(symmetric)loss is advised for getting the point and interval estimates of the HEE distribution.
基金This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RG23142).
文摘This article introduces a novel variant of the generalized linear exponential(GLE)distribution,known as the sine generalized linear exponential(SGLE)distribution.The SGLE distribution utilizes the sine transformation to enhance its capabilities.The updated distribution is very adaptable and may be efficiently used in the modeling of survival data and dependability issues.The suggested model incorporates a hazard rate function(HRF)that may display a rising,J-shaped,or bathtub form,depending on its unique characteristics.This model includes many well-known lifespan distributions as separate sub-models.The suggested model is accompanied with a range of statistical features.The model parameters are examined using the techniques of maximum likelihood and Bayesian estimation using progressively censored data.In order to evaluate the effectiveness of these techniques,we provide a set of simulated data for testing purposes.The relevance of the newly presented model is shown via two real-world dataset applications,highlighting its superiority over other respected similar models.
文摘A novel extended Lindley lifetime model that exhibits unimodal or decreasing density shapes as well as increasing,bathtub or unimodal-then-bathtub failure rates, named the Marshall-Olkin-Lindley (MOL) model is studied.In this research, using a progressive Type-II censored, various inferences of the MOL model parameters oflife are introduced. Utilizing the maximum likelihood method as a classical approach, the estimators of themodel parameters and various reliability measures are investigated. Against both symmetric and asymmetric lossfunctions, the Bayesian estimates are obtained using the Markov Chain Monte Carlo (MCMC) technique with theassumption of independent gamma priors. From the Fisher information data and the simulatedMarkovian chains,the approximate asymptotic interval and the highest posterior density interval, respectively, of each unknownparameter are calculated. Via an extensive simulated study, the usefulness of the various suggested strategies isassessedwith respect to some evaluationmetrics such as mean squared errors, mean relative absolute biases, averageconfidence lengths, and coverage percentages. Comparing the Bayesian estimations based on the asymmetric lossfunction to the traditional technique or the symmetric loss function-based Bayesian estimations, the analysisdemonstrates that asymmetric loss function-based Bayesian estimations are preferred. Finally, two data sets,representing vinyl chloride and repairable mechanical equipment items, have been investigated to support theapproaches proposed and show the superiority of the proposed model compared to the other fourteen lifetimemodels.
基金supported by the National Natural Science Foundation of China(7117116471401134+1 种基金71571144)the Natural Science Basic Research Program of Shaanxi Province(2015JM1003)
文摘This paper considers the Bayesian and expected Bayesian(E-Bayesian) estimations of the parameter and reliability function for competing risk model from Gompertz distribution under Type-I progressively hybrid censoring scheme(PHCS). The estimations are obtained based on Gamma conjugate prior for the parameter under squared error(SE) and Linex loss functions. The simulation results are provided for the comparison purpose and one data set is analyzed.
基金Let Pub(www.letpub.com)for its linguistic assistance during the preparation of this manuscript.This study was funded by Taif University Researchers Supporting Project number(TURSP-2020/279),Taif University,Taif,Saudi Arabia.
文摘An inverse problemin practical scientific investigations is the process of computing unknown parameters from a set of observations where the observations are only recorded indirectly,such as monitoring and controlling quality in industrial process control.Linear regression can be thought of as linear inverse problems.In other words,the procedure of unknown estimation parameters can be expressed as an inverse problem.However,maximum likelihood provides an unstable solution,and the problembecomes more complicated if unknown parameters are estimated from different samples.Hence,researchers search for better estimates.We study two joint censoring schemes for lifetime products in industrial process monitoring.In practice,this type of data can be collected in fields such as the medical industry and industrial engineering.In this study,statistical inference for the Chen lifetime products is considered and analyzed to estimate underlying parameters.Maximum likelihood and Bayes’rule are both studied for model parameters.The asymptotic distribution of maximumlikelihood estimators and the empirical distributions obtained withMarkov chainMonte Carlo algorithms are utilized to build the interval estimators.Theoretical results using tables and figures are adopted through simulation studies and verified in an analysis of the lifetime data.We briefly describe the performance of developed methods.
基金the Deanship Scientific Research(DSR)King Abdulaziz University,Jeddah under Grant No.(G:337-130-1441).
文摘In this paper,we propose a new extension of the traditional Rayleigh distribution called the modified Kies Rayleigh distribution.The new distribution contains one scale and one shape parameter and its hazard rate function can be increasing and bathtub-shaped.Some mathematical properties of the new distribution are derived including quantiles and moments.The parameters of modified Kies Rayleigh distribution are estimated based on progressively Type-II censored data.For this purpose,we consider two estimation methods,namely maximum likelihood and maximum product of spacing estimation methods.To compare the efficiency of the proposed estimators,a simulation study is carried out.To show the applicability of the new model as well as the estimation methods,one real data for failure times of software is analyzed.Based on the empirical parts,we can conclude that the proposed model can be considered as a good model in the field of life testing and reliability analysis compared with other competing models.
文摘Maximum product spacing for stress–strength model based on progressive Type-II hybrid censored samples with different cases has been obtained.This paper deals with estimation of the stress strength reliability model R=P(Y<X)when the stress and strength are two independent exponentiated Gumbel distribution random variables with different shape parameters but having the same scale parameter.The stress–strength reliability model is estimated under progressive Type-II hybrid censoring samples.Two progressive Type-II hybrid censoring schemes were used,Case I:A sample size of stress is the equal sample size of strength,and same time of hybrid censoring,the product of spacing function under progressive Type-II hybrid censoring schemes.Case II:The sample size of stress is a different sample size of strength,in which the life-testing experiment with a progressive censoring scheme is terminated at a random time T 2 e0;1T.The maximum likelihood estimation and maximum product spacing estimation methods under progressive Type-II hybrid censored samples for the stress strength model have been discussed.A comparison study with classical methods as the maximum likelihood estimation method is discussed.Furthermore,to compare the performance of various cases,Markov chain Monte Carlo simulation is conducted by using iterative procedures as Newton Raphson or conjugate-gradient procedures.Finally,two real datasets are analyzed for illustrative purposes,first data for the breaking strengths of jute fiber,and the second data for the waiting times before the service of the customers of two banks.
基金Supported by the National Natural Science Foundation of China(71571144,71401134,71171164,11701406) Supported by the International Cooperation and Exchanges in Science and Technology Program of Shaanxi Province(2016KW-033)
文摘In this paper, we construct a Bayesian framework combining Type-Ⅰ progressively hybrid censoring scheme and competing risks which are independently distributed as exponentiated Weibull distribution with one scale parameter and two shape parameters. Since there exist unknown hyper-parameters in prior density functions of shape parameters, we consider the hierarchical priors to obtain the individual marginal posterior density functions,Bayesian estimates and highest posterior density credible intervals. As explicit expressions of estimates cannot be obtained, the componentwise updating algorithm of Metropolis-Hastings method is employed to compute the numerical results. Finally, it is concluded that Bayesian estimates have a good performance.
基金supported by the National Natural Science Foundation of China(7117116470471057)
文摘This paper proposes a simple constant-stress accel- erated life test (ALT) model from Burr type XII distribution when the data are Type-I progressively hybrid censored. The maximum likelihood estimation (MLE) of the parameters is obtained through the numerical method for solving the likelihood equations. Approxi- mate confidence interval (CI), based on normal approximation to the asymptotic distribution of MLE and percentile bootstrap Cl is derived. Finally, a numerical example is introduced and then a Monte Carlo simulation study is carried out to illustrate the pro- posed method.
文摘Inthispaper,theoptimumtestplanandparameterestimationfor3-stepstep-stress accelerated life tests in the presence of modified progressive Type-I censoring are discussed.It is assumed that the lifetime of test units follows a Lomax distribution with log of characteristic life being quadratic function of stress level.The maximum likelihood and Bayesian method are used to obtain the point and interval estimators of the model parameters.The Bayes estimates are obtained using Markov chain Monte Carlo simulation based on Gibbs sampling.The optimum plan for 3-step step-stress test under modified progressive Type-I censoring is developed which minimizes the asymptotic variance of the maximum likelihood estimators of log of scale parameter at design stress.Finally,the numerical study with sensitivity analysis is presented to illustrate the proposed study.
基金supported by the National Natural Science Foundation of China(71401134 71571144+1 种基金 71171164)the Program of International Cooperation and Exchanges in Science and Technology Funded by Shaanxi Province(2016KW-033)
文摘Under Type-Ⅱ progressively hybrid censoring, this paper discusses statistical inference and optimal design on stepstress partially accelerated life test for hybrid system in presence of masked data. It is assumed that the lifetime of the component in hybrid systems follows independent and identical modified Weibull distributions. The maximum likelihood estimations(MLEs)of the unknown parameters, acceleration factor and reliability indexes are derived by using the Newton-Raphson algorithm. The asymptotic variance-covariance matrix and the approximate confidence intervals are obtained based on normal approximation to the asymptotic distribution of MLEs of model parameters. Moreover,two bootstrap confidence intervals are constructed by using the parametric bootstrap method. The optimal time of changing stress levels is determined under D-optimality and A-optimality criteria.Finally, the Monte Carlo simulation study is carried out to illustrate the proposed procedures.
基金supported by the China Postdoctoral Science Foundation(2019M650260)the National Natural Science Foundation of China(11501433)。
文摘The inference for the dependent competing risks model is studied and the dependent structure of failure causes is modeled by a Marshall-Olkin bivariate Rayleigh distribution. Under generalized progressive hybrid censoring(GPHC), maximum likelihood estimates are established and the confidence intervals are constructed based on the asymptotic theory. Bayesian estimates and the highest posterior density credible intervals are obtained by using Gibbs sampling. Simulation and a real life electrical appliances data set are used for practical illustration.
基金This work was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under Grant No.FP-190-42.
文摘Accelerated life testing has been widely used in product life testing experiments because it can quickly provide information on the lifetime distributions by testing products or materials at higher than basic conditional levels of stress,such as pressure,temperature,vibration,voltage,or load to induce early failures.In this paper,a step stress partially accelerated life test(SSPALT)is regarded under the progressive type-II censored data with random removals.The removals from the test are considered to have the binomial distribution.The life times of the testing items are assumed to follow lengthbiased weighted Lomax distribution.The maximum likelihood method is used for estimating the model parameters of length-biased weighted Lomax.The asymptotic confidence interval estimates of the model parameters are evaluated using the Fisher information matrix.The Bayesian estimators cannot be obtained in the explicit form,so the Markov chain Monte Carlo method is employed to address this problem,which ensures both obtaining the Bayesian estimates as well as constructing the credible interval of the involved parameters.The precision of the Bayesian estimates and the maximum likelihood estimates are compared by simulations.In addition,to compare the performance of the considered confidence intervals for different parameter values and sample sizes.The Bootstrap confidence intervals give more accurate results than the approximate confidence intervals since the lengths of the former are less than the lengths of latter,for different sample sizes,observed failures,and censoring schemes,in most cases.Also,the percentile Bootstrap confidence intervals give more accurate results than Bootstrap-t since the lengths of the former are less than the lengths of latter for different sample sizes,observed failures,and censoring schemes,in most cases.Further performance comparison is conducted by the experiments with real data.
文摘In this article,we consider the statistical inferences of the unknown parameters of a generalized inverted exponential distribution based on the Type II progressively hybrid censored sample.By applying the expectation–maximization(EM)algorithm,the maximum likelihood estimators are developed for estimating the unknown parameters.The observed Fisher information matrix is obtained using the missing information principle,and it can be used for constructing asymptotic con-fidence intervals.By applying the bootstrapping technique,the confidence intervals for the parameters are also derived.Bayesian estimates of the unknown parameters are obtained using the Lindley’s approximation.Monte Carlo simulations are imple-mented and observations are given.Finally,a real data set representing the spread factor of micro-drops is analyzed to illustrative purposes.
文摘In general,simple subsystems like series or parallel are integrated to produce a complex hybrid system.The reliability of a system is determined by the reliability of its constituent components.It is often extremely difficult or impossible to get specific information about the component that caused the system to fail.Unknown failure causes are instances in which the actual cause of systemfailure is unknown.On the other side,thanks to current advanced technology based on computers,automation,and simulation,products have become incredibly dependable and trustworthy,and as a result,obtaining failure data for testing such exceptionally reliable items have become a very costly and time-consuming procedure.Therefore,because of its capacity to produce rapid and adequate failure data in a short period of time,accelerated life testing(ALT)is the most utilized approach in the field of product reliability and life testing.Based on progressively hybrid censored(PrHC)data froma three-component parallel series hybrid system that failed to owe to unknown causes,this paper investigates a challenging problem of parameter estimation and reliability assessment under a step stress partially accelerated life-test(SSPALT).Failures of components are considered to follow a power linear hazard rate(PLHR),which can be used when the failure rate displays linear,decreasing,increasing or bathtub failure patterns.The Tempered random variable(TRV)model is considered to reflect the effect of the high stress level used to induce early failure data.The maximum likelihood estimation(MLE)approach is used to estimate the parameters of the PLHR distribution and the acceleration factor.A variance covariance matrix(VCM)is then obtained to construct the approximate confidence intervals(ACIs).In addition,studentized bootstrap confidence intervals(ST-B CIs)are also constructed and compared with ACIs in terms of their respective interval lengths(ILs).Moreover,a simulation study is conducted to demonstrate the performance of the estimation procedures and the methodology discussed in this paper.Finally,real failure data from the air conditioning systems of an airplane is used to illustrate further the performance of the suggested estimation technique.
基金Natural Science Foundation of Guangdong Province,China(No.2018A030313829)Characteristic Innovation Projects of Ordinary Universities of Guangdong Province,China(No.2019KTSCX202)+1 种基金Higher Education Teaching Reform Project of Guangdong Province,China(No.2019625)Zhaoqing Educational Development Research Institute Project,China(No.ZQJYY2019033)。
文摘The reliability of a system is discussed when the strength of the system and the stress imposed on it are independent and non-identical exponentiated Pareto distributed random variables with progressively censored scheme.Different interval estimations are proposed.The interval estimations obtained are exact,approximate and bootstrap confidence intervals.Different methods and the corresponding confidence intervals are compared using Monte-Carlo simulations.Simulation results show that the confidence intervals(CIs)of exact and approximate methods are really better than those of the bootstrap method.
文摘In this paper,Health-related quality of life has not been adequately measured in bladder cancer.A recently developed reliable and disease-specific quality of life instrument(Bladder Cancer Index,RCI)was used to measure.Progressive type Ⅱ censoring schemes have potential usefulness in practice where budget constraints in place or there is a necessity for the speedy test.To test the process capability,the lifetime performance index Cl is widely recommended for evaluating the performance of the producfs lifetime and evaluating the lifetime performance index GL for the three-parameter Weighted-Lomax distribution(WLx)under progressive type-II censoring sample for a lower specification limit(L).The statistical inference concerning CL is conducted via obtaining the maximum likelihood of Cl on the base of progressive type-II censoring.The asymptotic normal distribution of the MLE of CL and the confidence interval is proposed.Moreover,the hypothesis testing of CL for evaluating the lifetime performance of WLx data is conducted.Also,assuming the conjugate prior distribution and squared error loss function,this study constructs a Bayes estimator of CL.The Bayes estimator of CL is then utilized to develop a credible interval in the condition of known L.Moreover,we propose a Bayesian test to assess the lifetime performance of products.We also propose a Bayesian test to assess the lifetime performance of products.Finally,two examples are given,one of them is considering a real life data of the remission times of bladder cancer patients in endurance lifetime test and the other is a simulated example to illustrate the usage of the proposed procedure.
文摘In this work,we consider the problem of estimating the parameters and predicting the unobserved or removed ordered data for the progressive type II censored flexible Weibull sample.Frequentist and Bayesian analyses are adopted for conducting the estimation and prediction problems.The likelihood method as well as the Bayesian sampling techniques is applied for the inference problems.The point predictors and credible intervals of unobserved data based on an informative set of data are computed.Markov ChainMonte Carlo samples are performed to compare the so-obtained methods,and one real data set is analyzed for illustrative purposes.