Let U be a (B, A)-bimodule, A and B be rings, and be a formal triangular matrix ring. In this paper, we characterize the structure of relative Ding projective modules over T under some conditions. Furthermore, using t...Let U be a (B, A)-bimodule, A and B be rings, and be a formal triangular matrix ring. In this paper, we characterize the structure of relative Ding projective modules over T under some conditions. Furthermore, using the left global relative Ding projective dimensions of A and B, we estimate the relative Ding projective dimension of a left T-module.展开更多
In this paper, we study some properties of n-strongly Gorenstein projective,injective and flat modules, and discuss some connections between n-strongly Gorenstein injective, projective and flat modules. Some applicati...In this paper, we study some properties of n-strongly Gorenstein projective,injective and flat modules, and discuss some connections between n-strongly Gorenstein injective, projective and flat modules. Some applications are given.展开更多
In this paper, we mainly investigate some properties of strongly n-Gorenstein projective, injective and flat modules under the extension of rings, which mainly including excellent extensions, morita equivalences, poly...In this paper, we mainly investigate some properties of strongly n-Gorenstein projective, injective and flat modules under the extension of rings, which mainly including excellent extensions, morita equivalences, polynomial extensions and localizations.展开更多
This paper is a study of strongly Ding projective modules with respect to a semidualizing module. The class of strongly Ding flat modules with respect to a semidualizing module is also investigated, and the relationsh...This paper is a study of strongly Ding projective modules with respect to a semidualizing module. The class of strongly Ding flat modules with respect to a semidualizing module is also investigated, and the relationship between strongly Ding projective modules and strongly Ding flat modules with respect to a semidualizing module is characterized.Some well-known results on strongly Ding projective modules, n-strongly Ding projective modules and strongly D_C-projective modules are generalized and unified.展开更多
We prove that a certain eventually homological isomorphism between module categories induces triangle equivalences between their singularity categories,Gorenstein defect categories and stable categories of Gorenstein ...We prove that a certain eventually homological isomorphism between module categories induces triangle equivalences between their singularity categories,Gorenstein defect categories and stable categories of Gorenstein projective modules.Furthermore,we show that the Auslander-Reiten conjecture and the Gorenstein symmetry conjecture can be reduced by eventually homological isomorphisms.Applying these results to arrow removal and vertex removal,we describe the Gorenstein projective modules over some non-monomial algebras and verify the Auslander-Reiten conjecture for certain algebras.展开更多
The current article intends to introduce the reader to the concept of injective and projective modules and to describe the CFT. We present a clear view to show the homological algebra and injective and projective modu...The current article intends to introduce the reader to the concept of injective and projective modules and to describe the CFT. We present a clear view to show the homological algebra and injective and projective modules.展开更多
Let R be a ring, and let (F, C) be a cotorsion theory. In this article, the notion of F-perfect rings is introduced as a nontrial generalization of perfect rings and A-perfect rings. A ring R is said to be right dr-...Let R be a ring, and let (F, C) be a cotorsion theory. In this article, the notion of F-perfect rings is introduced as a nontrial generalization of perfect rings and A-perfect rings. A ring R is said to be right dr-perfect if F is projective relative to R for any F ∈ F. We give some characterizations of F-perfect rings. For example, we show that a ring R is right F-perfect if and only if F-covers of finitely generated modules are projective. Moreover, we define F-perfect modules and investigate some properties of them.展开更多
We prove that for a Frobenius extension, if a module over the extension ring is Gorenstein projective,then its underlying module over the base ring is Gorenstein projective; the converse holds if the frobenius extensi...We prove that for a Frobenius extension, if a module over the extension ring is Gorenstein projective,then its underlying module over the base ring is Gorenstein projective; the converse holds if the frobenius extension is either left-Gorenstein or separable(e.g., the integral group ring extension ZZG).Moreover, for the Frobenius extension RA = R[x]/(x^2), we show that: a graded A-module is Gorenstein projective in GrMod(A), if and only if its ungraded A-module is Gorenstein projective, if and only if its underlying R-module is Gorenstein projective. It immediately follows that an R-complex is Gorenstein projective if and only if all its items are Gorenstein projective R-modules.展开更多
Let H and its dual H* be finite dimensional semisimple Hopf algebras. In this paper, we firstly prove that the derived representation types of an algebra A and the crossed product algebra A#σH are coincident. This is...Let H and its dual H* be finite dimensional semisimple Hopf algebras. In this paper, we firstly prove that the derived representation types of an algebra A and the crossed product algebra A#σH are coincident. This is an improvement of the conclusion about representation type of an algebra in Li and Zhang [Sci China Ser A, 2006, 50: 1-13]. Secondly, we give the relationship between Gorenstein projective modules over A and that over A#σH. Then, using this result, it is proven that A is a finite dimensional CM-finite Gorenstein algebra if and only if so is A#σH.展开更多
Abstract We introduce the singularity category with respect to Ding projective modules, Db dpsg(R), as the Verdier quotient of Ding derived category Db DP(R) by triangulated subcategory Kb(DP), and give some tri...Abstract We introduce the singularity category with respect to Ding projective modules, Db dpsg(R), as the Verdier quotient of Ding derived category Db DP(R) by triangulated subcategory Kb(DP), and give some triangle equivalences. Assume DP is precovering. We show that Db DP(R) ≌K-,dpb(DP) and Dbpsg(R) ≌ DbDdefect(R). We prove that each R-module is of finite Ding projective dimension if and only if Dbdpsg(R) = 0.展开更多
The authors introduce and investigate the Tc-Gorenstein projective, Lc- Gorenstein injective and Hc-Gorenstein flat modules with respect to a semidualizing module C which shares the common properties with the Gorenste...The authors introduce and investigate the Tc-Gorenstein projective, Lc- Gorenstein injective and Hc-Gorenstein flat modules with respect to a semidualizing module C which shares the common properties with the Gorenstein projective, injective and flat modules, respectively. The authors prove that the classes of all the Tc-Gorenstein projective or the Hc-Gorenstein flat modules are exactly those Gorenstein projective or flat modules which are in the Auslander class with respect to C, respectively, and the classes of all the Lc-Gorenstein 'injective modules are exactly those Gorenstein injective modules which are in the Bass class, so the authors get the relations between the Gorenstein projective, injective or flat modules and the C-Gorenstein projective, injective or flat modules. Moreover, the authors consider the Tc(R)-projective and Lc(R)-injective dimensions and Tc(R)-precovers and Lc(R)-preenvelopes. Fiually, the authors study the Hc-Gorenstein flat modules and extend the Foxby equivalences.展开更多
We introduce the Gorenstein algebraic K-theory space and the Gorenstein algebraic K-group of a ring, and show the relation with the classical algebraic K-theory space, and also show the 'resolution theorem' in this ...We introduce the Gorenstein algebraic K-theory space and the Gorenstein algebraic K-group of a ring, and show the relation with the classical algebraic K-theory space, and also show the 'resolution theorem' in this context due to Quillen. We characterize the Gorenstein algebraic K-groups by two different Mgebraic K-groups and by the idempotent completeness of the Gorenstein singularity category of the ring. We compute the Gorenstein algebraic K-groups along a recollement of the bounded Gorenstein derived categories of CM-finite Gorenstein algebras.展开更多
Let Λ be an Artin algebra and let Gprj-Λ denote the class of all the finitely generated Gorenstein projective Λ-modules. In this paper, we study the components of the stable Auslander-Reiten quiver of a certain sub...Let Λ be an Artin algebra and let Gprj-Λ denote the class of all the finitely generated Gorenstein projective Λ-modules. In this paper, we study the components of the stable Auslander-Reiten quiver of a certain subcategory of the monomorphism category S(Gprj-Λ) containing boundary vertices. We describe the shape of such components. It is shown that certain components are linked to the orbits of an auto-equivalence on the stable category Gprj. In particular, for the finite components, we show that under certain mild conditions,their cardinalities are divisible by 3. We see that this three-periodicity phenomenon reoccurs several times in the paper.展开更多
There is a variety of nice results about strongly Gorenstein flat modules over coherent rings. These results are done by Ding, Lie and Mao. The aim of this paper is to generalize some of these results, and to give hom...There is a variety of nice results about strongly Gorenstein flat modules over coherent rings. These results are done by Ding, Lie and Mao. The aim of this paper is to generalize some of these results, and to give homological descriptions of the strongly Gorenstein flat dimension (of modules and rings) over arbitrary associative rings.展开更多
We show that over a right coherent left perfect ring R, a complex C of left R-modules is Gorenstein projective if and only if C^m is Gorenstein projective in R-Mod for all m E Z. Basing on this we show that if R is a ...We show that over a right coherent left perfect ring R, a complex C of left R-modules is Gorenstein projective if and only if C^m is Gorenstein projective in R-Mod for all m E Z. Basing on this we show that if R is a right coherent left perfect ring then Gpd(C) = sup{Gpd(C^m)|m ∈ Z} where Gpd(-) denotes Gorenstein projective dimension.展开更多
In the paper, Ding projective modules and Ding projective complexes are considered. In particular, it is proven that Ding projective complexes are precisely the complexes X for which each Xm is a Ding projective R-mod...In the paper, Ding projective modules and Ding projective complexes are considered. In particular, it is proven that Ding projective complexes are precisely the complexes X for which each Xm is a Ding projective R-module for all m ∈ Z.展开更多
We introduce a generalization of the Gorenstein injective modules:the Gorenstein FPn-injective modules(denoted by GI_(n)).They are the cycles of the exact complexes of injective modules that remain exact when we apply...We introduce a generalization of the Gorenstein injective modules:the Gorenstein FPn-injective modules(denoted by GI_(n)).They are the cycles of the exact complexes of injective modules that remain exact when we apply a functor Hom(A,-),with A any FP_(n)-injective module.Thus,GL_(o)is the class of classical Gorenstein injective modules,and GI_(1)is the class of Ding injective modules.We prove that over any ring R,for any n≥2,the class GI_(n)is the right half of a perfect cotorsion pair,and therefore it is an enveloping class.For n=1 we show that GI_(1)(i.e.,the Ding injectives)forms the right half of a hereditary cotorsion pair.If moreover the ring R is coherent,then the Ding injective modules form an enveloping class.We also define the dual notion,that of Gorenstein FP_(n)-projectives(denoted by GP_(n)).They generalize the Ding projective modules,and so,the Gorenstein projective modules.We prove that for any n≥2 the class GP_(n)is the left half of a complete hereditary cotorsion pair,and therefore it is special precovering.展开更多
As we know,a complex P is projective if and only if P is exact with Z_n(P)projective in R-Mod for each n∈Z and any morphism f:P→C is null homotopic for any complex C.In this article,we study the notion of DG-Gorenst...As we know,a complex P is projective if and only if P is exact with Z_n(P)projective in R-Mod for each n∈Z and any morphism f:P→C is null homotopic for any complex C.In this article,we study the notion of DG-Gorenstein projective complexes.We show that a complex G is DG-Gorenstein projective if and only if G is exact with Z_n(G)Gorenstein projective in R-Mod for each n∈Z and any morphism f:G→Q is null homotopic whenever Q is a DG-projective complex.展开更多
The introduction of w-operation in the class of flat modules has been successful. Let R be a ring. An R-module M is called a w-fiat module if Tor1r(M, N) is GV-torsion for all R-modules N. In this paper, we introduc...The introduction of w-operation in the class of flat modules has been successful. Let R be a ring. An R-module M is called a w-fiat module if Tor1r(M, N) is GV-torsion for all R-modules N. In this paper, we introduce the w-operation in Gorenstein homological algebra. An R-module M is called Ding w-flat if there exists an exact sequence of projective R-modules ... → P1 → P0 → p0 → p1 → ... such that M Im(P0 → p0) and such that the functor HomR (-,F) leaves the sequence exact whenever F is w-flat. Several well- known classes of rings are characterized in terms of Ding w-flat modules. Some examples are given to show that Ding w-flat modules lie strictly between projective modules and Gorenstein projective modules. The Ding w-flat dimension (of modules and rings) and the existence of Ding w-flat precovers are also studied.展开更多
We give a lower bound of the Loewy length of the projective cover of the trivial module for the group algebra kG of a finite group G of Lie type defined over a finite field of odd characteristic p, where k is an arbit...We give a lower bound of the Loewy length of the projective cover of the trivial module for the group algebra kG of a finite group G of Lie type defined over a finite field of odd characteristic p, where k is an arbitrary field of characteristic p. The proof uses Auslander-Reiten theory.展开更多
文摘Let U be a (B, A)-bimodule, A and B be rings, and be a formal triangular matrix ring. In this paper, we characterize the structure of relative Ding projective modules over T under some conditions. Furthermore, using the left global relative Ding projective dimensions of A and B, we estimate the relative Ding projective dimension of a left T-module.
基金Supported by the National Natural Science Foundation of China(11361051) Supported by the Program for New Century Excellent the Talents in University(NCET-13-0957)
文摘In this paper, we study some properties of n-strongly Gorenstein projective,injective and flat modules, and discuss some connections between n-strongly Gorenstein injective, projective and flat modules. Some applications are given.
基金Supported by the NNSF of China(10901129)Supported by the SRFDP(20096203120001)
文摘In this paper, we mainly investigate some properties of strongly n-Gorenstein projective, injective and flat modules under the extension of rings, which mainly including excellent extensions, morita equivalences, polynomial extensions and localizations.
基金Supported by the Postdoctoral Science Foundation of China(2017M611851), the Jiangsu Planned Projects for Postdoctoral Research Funds(1601151C) and the Provincial Natural Science Foundation of Anhui Province(KJ2017A040)
文摘This paper is a study of strongly Ding projective modules with respect to a semidualizing module. The class of strongly Ding flat modules with respect to a semidualizing module is also investigated, and the relationship between strongly Ding projective modules and strongly Ding flat modules with respect to a semidualizing module is characterized.Some well-known results on strongly Ding projective modules, n-strongly Ding projective modules and strongly D_C-projective modules are generalized and unified.
基金supported by National Natural Science Foundation of China(Grant Nos.12061060 and 11801141)Scientific and Technological Planning Project of Yunnan Province(Grant No.202305AC160005)Scientific and Technological Innovation Team of Yunnan Province(Grant No.2020CXTD25)。
文摘We prove that a certain eventually homological isomorphism between module categories induces triangle equivalences between their singularity categories,Gorenstein defect categories and stable categories of Gorenstein projective modules.Furthermore,we show that the Auslander-Reiten conjecture and the Gorenstein symmetry conjecture can be reduced by eventually homological isomorphisms.Applying these results to arrow removal and vertex removal,we describe the Gorenstein projective modules over some non-monomial algebras and verify the Auslander-Reiten conjecture for certain algebras.
文摘The current article intends to introduce the reader to the concept of injective and projective modules and to describe the CFT. We present a clear view to show the homological algebra and injective and projective modules.
文摘Let R be a ring, and let (F, C) be a cotorsion theory. In this article, the notion of F-perfect rings is introduced as a nontrial generalization of perfect rings and A-perfect rings. A ring R is said to be right dr-perfect if F is projective relative to R for any F ∈ F. We give some characterizations of F-perfect rings. For example, we show that a ring R is right F-perfect if and only if F-covers of finitely generated modules are projective. Moreover, we define F-perfect modules and investigate some properties of them.
基金supported by National Natural Science Foundation of China(Grant No.11401476)China Postdoctoral Science Foundation(Grant No.2016M591592)
文摘We prove that for a Frobenius extension, if a module over the extension ring is Gorenstein projective,then its underlying module over the base ring is Gorenstein projective; the converse holds if the frobenius extension is either left-Gorenstein or separable(e.g., the integral group ring extension ZZG).Moreover, for the Frobenius extension RA = R[x]/(x^2), we show that: a graded A-module is Gorenstein projective in GrMod(A), if and only if its ungraded A-module is Gorenstein projective, if and only if its underlying R-module is Gorenstein projective. It immediately follows that an R-complex is Gorenstein projective if and only if all its items are Gorenstein projective R-modules.
基金supported by National Natural Science Foundation of China (Grant No.11171296)the Zhejiang Provincial Natural Science Foundation of China (Grant No. D7080064)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110101110010)
文摘Let H and its dual H* be finite dimensional semisimple Hopf algebras. In this paper, we firstly prove that the derived representation types of an algebra A and the crossed product algebra A#σH are coincident. This is an improvement of the conclusion about representation type of an algebra in Li and Zhang [Sci China Ser A, 2006, 50: 1-13]. Secondly, we give the relationship between Gorenstein projective modules over A and that over A#σH. Then, using this result, it is proven that A is a finite dimensional CM-finite Gorenstein algebra if and only if so is A#σH.
基金Supported by National Natural Science Foundation of China(Grant Nos.11261050,11361051 and 11361052)Program for New Century Excellent Talents in University(Grant No.NCET-13-0957)
文摘Abstract We introduce the singularity category with respect to Ding projective modules, Db dpsg(R), as the Verdier quotient of Ding derived category Db DP(R) by triangulated subcategory Kb(DP), and give some triangle equivalences. Assume DP is precovering. We show that Db DP(R) ≌K-,dpb(DP) and Dbpsg(R) ≌ DbDdefect(R). We prove that each R-module is of finite Ding projective dimension if and only if Dbdpsg(R) = 0.
基金Project supported by the National Natural Science Foundation of China(No.10971090)
文摘The authors introduce and investigate the Tc-Gorenstein projective, Lc- Gorenstein injective and Hc-Gorenstein flat modules with respect to a semidualizing module C which shares the common properties with the Gorenstein projective, injective and flat modules, respectively. The authors prove that the classes of all the Tc-Gorenstein projective or the Hc-Gorenstein flat modules are exactly those Gorenstein projective or flat modules which are in the Auslander class with respect to C, respectively, and the classes of all the Lc-Gorenstein 'injective modules are exactly those Gorenstein injective modules which are in the Bass class, so the authors get the relations between the Gorenstein projective, injective or flat modules and the C-Gorenstein projective, injective or flat modules. Moreover, the authors consider the Tc(R)-projective and Lc(R)-injective dimensions and Tc(R)-precovers and Lc(R)-preenvelopes. Fiually, the authors study the Hc-Gorenstein flat modules and extend the Foxby equivalences.
文摘We introduce the Gorenstein algebraic K-theory space and the Gorenstein algebraic K-group of a ring, and show the relation with the classical algebraic K-theory space, and also show the 'resolution theorem' in this context due to Quillen. We characterize the Gorenstein algebraic K-groups by two different Mgebraic K-groups and by the idempotent completeness of the Gorenstein singularity category of the ring. We compute the Gorenstein algebraic K-groups along a recollement of the bounded Gorenstein derived categories of CM-finite Gorenstein algebras.
基金supported by National Natural Science Foundation of China (Grant No. 12101316)。
文摘Let Λ be an Artin algebra and let Gprj-Λ denote the class of all the finitely generated Gorenstein projective Λ-modules. In this paper, we study the components of the stable Auslander-Reiten quiver of a certain subcategory of the monomorphism category S(Gprj-Λ) containing boundary vertices. We describe the shape of such components. It is shown that certain components are linked to the orbits of an auto-equivalence on the stable category Gprj. In particular, for the finite components, we show that under certain mild conditions,their cardinalities are divisible by 3. We see that this three-periodicity phenomenon reoccurs several times in the paper.
文摘There is a variety of nice results about strongly Gorenstein flat modules over coherent rings. These results are done by Ding, Lie and Mao. The aim of this paper is to generalize some of these results, and to give homological descriptions of the strongly Gorenstein flat dimension (of modules and rings) over arbitrary associative rings.
基金Supported by National' Natural Science Foundation of China (Grant No. 10961021), TRAPOYT and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China
文摘We show that over a right coherent left perfect ring R, a complex C of left R-modules is Gorenstein projective if and only if C^m is Gorenstein projective in R-Mod for all m E Z. Basing on this we show that if R is a right coherent left perfect ring then Gpd(C) = sup{Gpd(C^m)|m ∈ Z} where Gpd(-) denotes Gorenstein projective dimension.
基金Supported by National Natural Science Foundation of China(Grant Nos.11561039 and 11761045)Natural Science Foundation of Gansu Province of China(Grant No.17JR5RA091)
文摘In the paper, Ding projective modules and Ding projective complexes are considered. In particular, it is proven that Ding projective complexes are precisely the complexes X for which each Xm is a Ding projective R-module for all m ∈ Z.
文摘We introduce a generalization of the Gorenstein injective modules:the Gorenstein FPn-injective modules(denoted by GI_(n)).They are the cycles of the exact complexes of injective modules that remain exact when we apply a functor Hom(A,-),with A any FP_(n)-injective module.Thus,GL_(o)is the class of classical Gorenstein injective modules,and GI_(1)is the class of Ding injective modules.We prove that over any ring R,for any n≥2,the class GI_(n)is the right half of a perfect cotorsion pair,and therefore it is an enveloping class.For n=1 we show that GI_(1)(i.e.,the Ding injectives)forms the right half of a hereditary cotorsion pair.If moreover the ring R is coherent,then the Ding injective modules form an enveloping class.We also define the dual notion,that of Gorenstein FP_(n)-projectives(denoted by GP_(n)).They generalize the Ding projective modules,and so,the Gorenstein projective modules.We prove that for any n≥2 the class GP_(n)is the left half of a complete hereditary cotorsion pair,and therefore it is special precovering.
基金Supported by the National Natural Science Foundation of China(2061061)Fundamental Research Funds for the Central Universities(31920190054)+1 种基金Funds for Talent Introduction of Northwest Minzu University(XBMUYJRC201406)First-Rate Discipline of Northwest Minzu University。
文摘As we know,a complex P is projective if and only if P is exact with Z_n(P)projective in R-Mod for each n∈Z and any morphism f:P→C is null homotopic for any complex C.In this article,we study the notion of DG-Gorenstein projective complexes.We show that a complex G is DG-Gorenstein projective if and only if G is exact with Z_n(G)Gorenstein projective in R-Mod for each n∈Z and any morphism f:G→Q is null homotopic whenever Q is a DG-projective complex.
文摘The introduction of w-operation in the class of flat modules has been successful. Let R be a ring. An R-module M is called a w-fiat module if Tor1r(M, N) is GV-torsion for all R-modules N. In this paper, we introduce the w-operation in Gorenstein homological algebra. An R-module M is called Ding w-flat if there exists an exact sequence of projective R-modules ... → P1 → P0 → p0 → p1 → ... such that M Im(P0 → p0) and such that the functor HomR (-,F) leaves the sequence exact whenever F is w-flat. Several well- known classes of rings are characterized in terms of Ding w-flat modules. Some examples are given to show that Ding w-flat modules lie strictly between projective modules and Gorenstein projective modules. The Ding w-flat dimension (of modules and rings) and the existence of Ding w-flat precovers are also studied.
基金the Japan Society for Promotion of Science (JSPS), Grant-in-Aid for Scientific Research (C)15K04776, 2015-2018, and by the CIB in EPFL. The second author was supported by the German Science Foundation (DFG) Scientific Priority Programme SPP-1489 "Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory".
文摘We give a lower bound of the Loewy length of the projective cover of the trivial module for the group algebra kG of a finite group G of Lie type defined over a finite field of odd characteristic p, where k is an arbitrary field of characteristic p. The proof uses Auslander-Reiten theory.